基于卷积神经网络的可视化恶意软件聚类

Sandeep B. Kadam, V. Abhijith, Premlal Ajikumar Sreelekha
{"title":"基于卷积神经网络的可视化恶意软件聚类","authors":"Sandeep B. Kadam, V. Abhijith, Premlal Ajikumar Sreelekha","doi":"10.1109/ICITIIT57246.2023.10068670","DOIUrl":null,"url":null,"abstract":"As the popularity of Internet of Things (IoT) devices expands in industries and residences, their low processing power and inadequate security make them ideal targets for attackers. Traditional signature-based methods for detecting malware are inefficient against new malware since a small modification in the malware's source code can modify its signature, making it impossible to detect. Understanding the basics of malware behaviour and combatting hackers requires the classification of malware samples. In this study, we examine an image-based classification of malware in which nine malware families were categorised using a convolution neural network (CNN). Using kfold stratified cross-validation, our model attained a promising 89.5% accuracy in training and 82% accuracy in validation.","PeriodicalId":170485,"journal":{"name":"2023 4th International Conference on Innovative Trends in Information Technology (ICITIIT)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Visual Based Malware Clustering Using Convolution Neural Network\",\"authors\":\"Sandeep B. Kadam, V. Abhijith, Premlal Ajikumar Sreelekha\",\"doi\":\"10.1109/ICITIIT57246.2023.10068670\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As the popularity of Internet of Things (IoT) devices expands in industries and residences, their low processing power and inadequate security make them ideal targets for attackers. Traditional signature-based methods for detecting malware are inefficient against new malware since a small modification in the malware's source code can modify its signature, making it impossible to detect. Understanding the basics of malware behaviour and combatting hackers requires the classification of malware samples. In this study, we examine an image-based classification of malware in which nine malware families were categorised using a convolution neural network (CNN). Using kfold stratified cross-validation, our model attained a promising 89.5% accuracy in training and 82% accuracy in validation.\",\"PeriodicalId\":170485,\"journal\":{\"name\":\"2023 4th International Conference on Innovative Trends in Information Technology (ICITIIT)\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-02-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 4th International Conference on Innovative Trends in Information Technology (ICITIIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICITIIT57246.2023.10068670\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 4th International Conference on Innovative Trends in Information Technology (ICITIIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICITIIT57246.2023.10068670","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

随着物联网(IoT)设备在工业和家庭中的普及,其低处理能力和不充分的安全性使其成为攻击者的理想目标。传统的基于签名的检测恶意软件的方法对于新的恶意软件是低效的,因为对恶意软件源代码的微小修改可以修改其签名,使其无法检测到。了解恶意软件的基本行为和打击黑客需要对恶意软件样本进行分类。在本研究中,我们研究了基于图像的恶意软件分类,其中使用卷积神经网络(CNN)对九个恶意软件家族进行了分类。使用kfold分层交叉验证,我们的模型在训练中达到了89.5%的准确率,在验证中达到了82%的准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Visual Based Malware Clustering Using Convolution Neural Network
As the popularity of Internet of Things (IoT) devices expands in industries and residences, their low processing power and inadequate security make them ideal targets for attackers. Traditional signature-based methods for detecting malware are inefficient against new malware since a small modification in the malware's source code can modify its signature, making it impossible to detect. Understanding the basics of malware behaviour and combatting hackers requires the classification of malware samples. In this study, we examine an image-based classification of malware in which nine malware families were categorised using a convolution neural network (CNN). Using kfold stratified cross-validation, our model attained a promising 89.5% accuracy in training and 82% accuracy in validation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信