硅中间体中通硅孔几何设计的参数化研究

K. Pan, Yangyang Lai, Jiefeng Xu, Pengcheng Yin, J. Ha, Chongyang Cai, Junbo Yang, Seungbae Park
{"title":"硅中间体中通硅孔几何设计的参数化研究","authors":"K. Pan, Yangyang Lai, Jiefeng Xu, Pengcheng Yin, J. Ha, Chongyang Cai, Junbo Yang, Seungbae Park","doi":"10.1109/iTherm54085.2022.9899623","DOIUrl":null,"url":null,"abstract":"Silicon interposer has been widely used in advanced IC packages as the interconnection to achieve heterogeneous integration and higher packaging density. However, thermomechanical reliability concerns of silicon interposers induced by the CTE mismatch between the silicon and the through-silicon vias (copper) need to be well understood. This study investigates the reliability of silicon interposers with different combinations of design parameters including the diameter and the pitch of the vias, and the thickness of the silicon substrate during the thermal cycling. The temperature profile is from room temperature (RT) 23°C to 400°C and then cooled to RT. Based on the numerical simulation, the protrusion of the copper via and the in-plane deformation of the silicon during thermal cycling are obtained. Unrecoverable copper protrusions are observed because of the creep behavior of the copper at high temperatures. The max. principal stress of the silicon substrate during thermal cycling is utilized to assess the reliability of the silicon for potential cracking failure. Furthermore, a machine learning model based on an artificial neural network (ANN) is developed, which reduces the computational time from 1.5 hours to 10 seconds. This well-trained ANN model can be used in the design stage of the silicon interposer to obtain the optimum design parameters.","PeriodicalId":351706,"journal":{"name":"2022 21st IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (iTherm)","volume":"99 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Parametric Study of The Geometry Design of Through-silicon Via in Silicon Interposer\",\"authors\":\"K. Pan, Yangyang Lai, Jiefeng Xu, Pengcheng Yin, J. Ha, Chongyang Cai, Junbo Yang, Seungbae Park\",\"doi\":\"10.1109/iTherm54085.2022.9899623\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Silicon interposer has been widely used in advanced IC packages as the interconnection to achieve heterogeneous integration and higher packaging density. However, thermomechanical reliability concerns of silicon interposers induced by the CTE mismatch between the silicon and the through-silicon vias (copper) need to be well understood. This study investigates the reliability of silicon interposers with different combinations of design parameters including the diameter and the pitch of the vias, and the thickness of the silicon substrate during the thermal cycling. The temperature profile is from room temperature (RT) 23°C to 400°C and then cooled to RT. Based on the numerical simulation, the protrusion of the copper via and the in-plane deformation of the silicon during thermal cycling are obtained. Unrecoverable copper protrusions are observed because of the creep behavior of the copper at high temperatures. The max. principal stress of the silicon substrate during thermal cycling is utilized to assess the reliability of the silicon for potential cracking failure. Furthermore, a machine learning model based on an artificial neural network (ANN) is developed, which reduces the computational time from 1.5 hours to 10 seconds. This well-trained ANN model can be used in the design stage of the silicon interposer to obtain the optimum design parameters.\",\"PeriodicalId\":351706,\"journal\":{\"name\":\"2022 21st IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (iTherm)\",\"volume\":\"99 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 21st IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (iTherm)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/iTherm54085.2022.9899623\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 21st IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (iTherm)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/iTherm54085.2022.9899623","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

硅中间层被广泛应用于先进的集成电路封装中,以实现异构集成和更高的封装密度。然而,硅和硅通孔(铜)之间的CTE不匹配引起的硅中间层的热机械可靠性问题需要得到很好的理解。本研究考察了不同设计参数组合下硅中间层在热循环过程中的可靠性,这些设计参数包括通孔的直径和节距以及硅衬底的厚度。温度分布从室温23℃到400℃,然后冷却到室温。通过数值模拟,得到了铜通孔在热循环过程中的突出和硅的面内变形。由于铜在高温下的蠕变行为,观察到不可回收的铜突出物。马克斯。利用热循环过程中硅衬底的主应力来评估硅衬底的可靠性。此外,开发了基于人工神经网络(ANN)的机器学习模型,将计算时间从1.5小时缩短到10秒。这种训练良好的人工神经网络模型可用于硅中间层的设计阶段,以获得最优的设计参数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Parametric Study of The Geometry Design of Through-silicon Via in Silicon Interposer
Silicon interposer has been widely used in advanced IC packages as the interconnection to achieve heterogeneous integration and higher packaging density. However, thermomechanical reliability concerns of silicon interposers induced by the CTE mismatch between the silicon and the through-silicon vias (copper) need to be well understood. This study investigates the reliability of silicon interposers with different combinations of design parameters including the diameter and the pitch of the vias, and the thickness of the silicon substrate during the thermal cycling. The temperature profile is from room temperature (RT) 23°C to 400°C and then cooled to RT. Based on the numerical simulation, the protrusion of the copper via and the in-plane deformation of the silicon during thermal cycling are obtained. Unrecoverable copper protrusions are observed because of the creep behavior of the copper at high temperatures. The max. principal stress of the silicon substrate during thermal cycling is utilized to assess the reliability of the silicon for potential cracking failure. Furthermore, a machine learning model based on an artificial neural network (ANN) is developed, which reduces the computational time from 1.5 hours to 10 seconds. This well-trained ANN model can be used in the design stage of the silicon interposer to obtain the optimum design parameters.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信