基于联合NLM-Weiner滤波的图像去噪

C. Shwetha, K. Meenakshy
{"title":"基于联合NLM-Weiner滤波的图像去噪","authors":"C. Shwetha, K. Meenakshy","doi":"10.1109/PICC.2015.7455801","DOIUrl":null,"url":null,"abstract":"This paper presents an image denoising algorithm that uses non local means algorithm together with Weiner filter. The presence of noise halo or rare patch effect in non local means denoised image occurs as a result of large variance between pixel values near the edges. This large variance is reduced by deliberately adding a small amount of blur near the edges before applying non-local means denoising and then filtering by Weiner filter reduces the noise halo effect in the resulting denoised image.","PeriodicalId":373395,"journal":{"name":"2015 International Conference on Power, Instrumentation, Control and Computing (PICC)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Combined NLM-Weiner filter based image denoising\",\"authors\":\"C. Shwetha, K. Meenakshy\",\"doi\":\"10.1109/PICC.2015.7455801\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents an image denoising algorithm that uses non local means algorithm together with Weiner filter. The presence of noise halo or rare patch effect in non local means denoised image occurs as a result of large variance between pixel values near the edges. This large variance is reduced by deliberately adding a small amount of blur near the edges before applying non-local means denoising and then filtering by Weiner filter reduces the noise halo effect in the resulting denoised image.\",\"PeriodicalId\":373395,\"journal\":{\"name\":\"2015 International Conference on Power, Instrumentation, Control and Computing (PICC)\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 International Conference on Power, Instrumentation, Control and Computing (PICC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PICC.2015.7455801\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Power, Instrumentation, Control and Computing (PICC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PICC.2015.7455801","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文提出了一种将非局部均值算法与韦纳滤波相结合的图像去噪算法。在非局部均值去噪图像中,由于边缘附近的像素值差异较大,会出现噪声晕或罕见的斑效应。在应用非局部均值去噪之前,故意在边缘附近添加少量的模糊,然后通过维纳滤波器滤波,减少了噪声晕效应,从而减小了这种大方差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Combined NLM-Weiner filter based image denoising
This paper presents an image denoising algorithm that uses non local means algorithm together with Weiner filter. The presence of noise halo or rare patch effect in non local means denoised image occurs as a result of large variance between pixel values near the edges. This large variance is reduced by deliberately adding a small amount of blur near the edges before applying non-local means denoising and then filtering by Weiner filter reduces the noise halo effect in the resulting denoised image.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信