B. D. Martino, Salvatore D'Angelo, A. Esposito, Riccardo Cappuzzo, Anderson Santana de Oliveira
{"title":"TOREADOR基元的ROCK算法并行化","authors":"B. D. Martino, Salvatore D'Angelo, A. Esposito, Riccardo Cappuzzo, Anderson Santana de Oliveira","doi":"10.1109/WAINA.2018.00119","DOIUrl":null,"url":null,"abstract":"We present the benefits of applying the code once deploy everywhere approach to clustering of categorical data over large datasets. The paper brings two main contributions: an step-by step application of the code based approach and an enhancement for the ROCK algorithm for clustering categorical data.","PeriodicalId":296466,"journal":{"name":"2018 32nd International Conference on Advanced Information Networking and Applications Workshops (WAINA)","volume":"108 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"ROCK Algorithm Parallelization with TOREADOR Primitives\",\"authors\":\"B. D. Martino, Salvatore D'Angelo, A. Esposito, Riccardo Cappuzzo, Anderson Santana de Oliveira\",\"doi\":\"10.1109/WAINA.2018.00119\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present the benefits of applying the code once deploy everywhere approach to clustering of categorical data over large datasets. The paper brings two main contributions: an step-by step application of the code based approach and an enhancement for the ROCK algorithm for clustering categorical data.\",\"PeriodicalId\":296466,\"journal\":{\"name\":\"2018 32nd International Conference on Advanced Information Networking and Applications Workshops (WAINA)\",\"volume\":\"108 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 32nd International Conference on Advanced Information Networking and Applications Workshops (WAINA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WAINA.2018.00119\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 32nd International Conference on Advanced Information Networking and Applications Workshops (WAINA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WAINA.2018.00119","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
ROCK Algorithm Parallelization with TOREADOR Primitives
We present the benefits of applying the code once deploy everywhere approach to clustering of categorical data over large datasets. The paper brings two main contributions: an step-by step application of the code based approach and an enhancement for the ROCK algorithm for clustering categorical data.