TOREADOR基元的ROCK算法并行化

B. D. Martino, Salvatore D'Angelo, A. Esposito, Riccardo Cappuzzo, Anderson Santana de Oliveira
{"title":"TOREADOR基元的ROCK算法并行化","authors":"B. D. Martino, Salvatore D'Angelo, A. Esposito, Riccardo Cappuzzo, Anderson Santana de Oliveira","doi":"10.1109/WAINA.2018.00119","DOIUrl":null,"url":null,"abstract":"We present the benefits of applying the code once deploy everywhere approach to clustering of categorical data over large datasets. The paper brings two main contributions: an step-by step application of the code based approach and an enhancement for the ROCK algorithm for clustering categorical data.","PeriodicalId":296466,"journal":{"name":"2018 32nd International Conference on Advanced Information Networking and Applications Workshops (WAINA)","volume":"108 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"ROCK Algorithm Parallelization with TOREADOR Primitives\",\"authors\":\"B. D. Martino, Salvatore D'Angelo, A. Esposito, Riccardo Cappuzzo, Anderson Santana de Oliveira\",\"doi\":\"10.1109/WAINA.2018.00119\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present the benefits of applying the code once deploy everywhere approach to clustering of categorical data over large datasets. The paper brings two main contributions: an step-by step application of the code based approach and an enhancement for the ROCK algorithm for clustering categorical data.\",\"PeriodicalId\":296466,\"journal\":{\"name\":\"2018 32nd International Conference on Advanced Information Networking and Applications Workshops (WAINA)\",\"volume\":\"108 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 32nd International Conference on Advanced Information Networking and Applications Workshops (WAINA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WAINA.2018.00119\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 32nd International Conference on Advanced Information Networking and Applications Workshops (WAINA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WAINA.2018.00119","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们介绍了应用代码一次部署无处不在的方法对大型数据集上的分类数据进行聚类的好处。本文带来了两个主要贡献:基于代码的逐步应用方法和对ROCK算法的改进,用于分类数据的聚类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ROCK Algorithm Parallelization with TOREADOR Primitives
We present the benefits of applying the code once deploy everywhere approach to clustering of categorical data over large datasets. The paper brings two main contributions: an step-by step application of the code based approach and an enhancement for the ROCK algorithm for clustering categorical data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信