Patricia Ordóñez, T. Armstrong, T. Oates, J. Fackler
{"title":"使用新的多变量时间序列表示生理数据的患者分类","authors":"Patricia Ordóñez, T. Armstrong, T. Oates, J. Fackler","doi":"10.1109/ICMLA.2011.46","DOIUrl":null,"url":null,"abstract":"In this paper we present two novel multivariate time series representations to classify physiological data of different lengths. The representations may be applied to any group of multivariate time series data that examine the state or health of an entity. Multivariate Bag-of-Patterns and Stacked Bags of-Patterns improve on their univariate counterpart, inspired by the bag-of-words model, by using multiple time series and analyzing the data in a multivariate fashion. We also borrow techniques from the natural language processing domain such as term frequency and inverse document frequency to improve classification accuracy. We introduce a technique named inverse frequency and present experimental results on classifying patients who have experienced acute episodes of hypotension.","PeriodicalId":439926,"journal":{"name":"2011 10th International Conference on Machine Learning and Applications and Workshops","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Classification of Patients Using Novel Multivariate Time Series Representations of Physiological Data\",\"authors\":\"Patricia Ordóñez, T. Armstrong, T. Oates, J. Fackler\",\"doi\":\"10.1109/ICMLA.2011.46\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we present two novel multivariate time series representations to classify physiological data of different lengths. The representations may be applied to any group of multivariate time series data that examine the state or health of an entity. Multivariate Bag-of-Patterns and Stacked Bags of-Patterns improve on their univariate counterpart, inspired by the bag-of-words model, by using multiple time series and analyzing the data in a multivariate fashion. We also borrow techniques from the natural language processing domain such as term frequency and inverse document frequency to improve classification accuracy. We introduce a technique named inverse frequency and present experimental results on classifying patients who have experienced acute episodes of hypotension.\",\"PeriodicalId\":439926,\"journal\":{\"name\":\"2011 10th International Conference on Machine Learning and Applications and Workshops\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 10th International Conference on Machine Learning and Applications and Workshops\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMLA.2011.46\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 10th International Conference on Machine Learning and Applications and Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA.2011.46","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Classification of Patients Using Novel Multivariate Time Series Representations of Physiological Data
In this paper we present two novel multivariate time series representations to classify physiological data of different lengths. The representations may be applied to any group of multivariate time series data that examine the state or health of an entity. Multivariate Bag-of-Patterns and Stacked Bags of-Patterns improve on their univariate counterpart, inspired by the bag-of-words model, by using multiple time series and analyzing the data in a multivariate fashion. We also borrow techniques from the natural language processing domain such as term frequency and inverse document frequency to improve classification accuracy. We introduce a technique named inverse frequency and present experimental results on classifying patients who have experienced acute episodes of hypotension.