一个开源的神经网络语音合成系统

Zhizheng Wu, O. Watts, Simon King
{"title":"一个开源的神经网络语音合成系统","authors":"Zhizheng Wu, O. Watts, Simon King","doi":"10.21437/SSW.2016-33","DOIUrl":null,"url":null,"abstract":"We introduce the Merlin speech synthesis toolkit for neural network-based speech synthesis. The system takes linguistic features as input, and employs neural networks to predict acoustic features, which are then passed to a vocoder to produce the speech waveform. Various neural network architectures are implemented, including a standard feedforward neural network, mixture density neural network, recurrent neural network (RNN), long short-term memory (LSTM) recurrent neural network, amongst others. The toolkit is Open Source, written in Python, and is extensible. This paper briefly describes the system, and provides some benchmarking results on a freely-available corpus.","PeriodicalId":340820,"journal":{"name":"Speech Synthesis Workshop","volume":"64 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"320","resultStr":"{\"title\":\"Merlin: An Open Source Neural Network Speech Synthesis System\",\"authors\":\"Zhizheng Wu, O. Watts, Simon King\",\"doi\":\"10.21437/SSW.2016-33\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce the Merlin speech synthesis toolkit for neural network-based speech synthesis. The system takes linguistic features as input, and employs neural networks to predict acoustic features, which are then passed to a vocoder to produce the speech waveform. Various neural network architectures are implemented, including a standard feedforward neural network, mixture density neural network, recurrent neural network (RNN), long short-term memory (LSTM) recurrent neural network, amongst others. The toolkit is Open Source, written in Python, and is extensible. This paper briefly describes the system, and provides some benchmarking results on a freely-available corpus.\",\"PeriodicalId\":340820,\"journal\":{\"name\":\"Speech Synthesis Workshop\",\"volume\":\"64 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"320\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Speech Synthesis Workshop\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21437/SSW.2016-33\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Speech Synthesis Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21437/SSW.2016-33","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 320

摘要

介绍了用于神经网络语音合成的Merlin语音合成工具箱。该系统以语言特征作为输入,并采用神经网络来预测声学特征,然后将其传递给声码器以产生语音波形。实现了各种神经网络架构,包括标准前馈神经网络、混合密度神经网络、循环神经网络(RNN)、长短期记忆(LSTM)循环神经网络等。该工具包是开源的,用Python编写,并且是可扩展的。本文简要介绍了该系统,并在一个免费语料库上提供了一些基准测试结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Merlin: An Open Source Neural Network Speech Synthesis System
We introduce the Merlin speech synthesis toolkit for neural network-based speech synthesis. The system takes linguistic features as input, and employs neural networks to predict acoustic features, which are then passed to a vocoder to produce the speech waveform. Various neural network architectures are implemented, including a standard feedforward neural network, mixture density neural network, recurrent neural network (RNN), long short-term memory (LSTM) recurrent neural network, amongst others. The toolkit is Open Source, written in Python, and is extensible. This paper briefly describes the system, and provides some benchmarking results on a freely-available corpus.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信