一种用于估计一氧化碳浓度状态的智能传感器的无偏有限脉冲响应滤波器设计

Miguel Vazquez-Olguin, Y. Shmaliy, O. Ibarra-Manzano, C. Lastre-Dominguez, L. Morales-Mendoza
{"title":"一种用于估计一氧化碳浓度状态的智能传感器的无偏有限脉冲响应滤波器设计","authors":"Miguel Vazquez-Olguin, Y. Shmaliy, O. Ibarra-Manzano, C. Lastre-Dominguez, L. Morales-Mendoza","doi":"10.1109/ROPEC.2017.8261641","DOIUrl":null,"url":null,"abstract":"Carbon monoxide (CO) is produced by incomplete combustion of organic materials. Dense urban areas present high concentration of CO which might be harmful for human life. Large and expensive industrial analyzers, placed at specific locations, are used to monitor this gas concentration, creating a poor density monitoring network. To increase granularity of the measurement grid, low cost smart sensors are located over the zone of interest. The reliability of such devises is increased by using unbiased, robust, predictive, and desirably blind signal processing algorithms. In this paper, we propose a novel blind iterative unbiased finite impulse response (UFIR) filtering algorithm, which meets the above requirements. Experimental verification is given for both the missing and complete measurement data of the CO concentration. High accuracy and precision of the predictive UFIR estimator are demonstrated in a short time and on a long time scale.","PeriodicalId":260469,"journal":{"name":"2017 IEEE International Autumn Meeting on Power, Electronics and Computing (ROPEC)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Design of an unbiased finite impulse response filter for a smart sensor to estimate state of CO concentration\",\"authors\":\"Miguel Vazquez-Olguin, Y. Shmaliy, O. Ibarra-Manzano, C. Lastre-Dominguez, L. Morales-Mendoza\",\"doi\":\"10.1109/ROPEC.2017.8261641\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Carbon monoxide (CO) is produced by incomplete combustion of organic materials. Dense urban areas present high concentration of CO which might be harmful for human life. Large and expensive industrial analyzers, placed at specific locations, are used to monitor this gas concentration, creating a poor density monitoring network. To increase granularity of the measurement grid, low cost smart sensors are located over the zone of interest. The reliability of such devises is increased by using unbiased, robust, predictive, and desirably blind signal processing algorithms. In this paper, we propose a novel blind iterative unbiased finite impulse response (UFIR) filtering algorithm, which meets the above requirements. Experimental verification is given for both the missing and complete measurement data of the CO concentration. High accuracy and precision of the predictive UFIR estimator are demonstrated in a short time and on a long time scale.\",\"PeriodicalId\":260469,\"journal\":{\"name\":\"2017 IEEE International Autumn Meeting on Power, Electronics and Computing (ROPEC)\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE International Autumn Meeting on Power, Electronics and Computing (ROPEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ROPEC.2017.8261641\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Autumn Meeting on Power, Electronics and Computing (ROPEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ROPEC.2017.8261641","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

一氧化碳(CO)是由有机物不完全燃烧产生的。人口密集的城市地区存在高浓度的一氧化碳,可能对人类的生命有害。放置在特定位置的大型且昂贵的工业分析仪用于监测这种气体浓度,从而形成了一个不良的密度监测网络。为了增加测量网格的粒度,低成本的智能传感器被放置在感兴趣的区域上。通过使用无偏、鲁棒、预测和理想的盲信号处理算法,这种装置的可靠性得到了提高。本文提出了一种新的盲迭代无偏有限脉冲响应(UFIR)滤波算法,该算法满足上述要求。对缺失的和完整的CO浓度测量数据进行了实验验证。在较短的时间和较长的时间尺度上证明了预测UFIR估计器具有较高的准确度和精密度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Design of an unbiased finite impulse response filter for a smart sensor to estimate state of CO concentration
Carbon monoxide (CO) is produced by incomplete combustion of organic materials. Dense urban areas present high concentration of CO which might be harmful for human life. Large and expensive industrial analyzers, placed at specific locations, are used to monitor this gas concentration, creating a poor density monitoring network. To increase granularity of the measurement grid, low cost smart sensors are located over the zone of interest. The reliability of such devises is increased by using unbiased, robust, predictive, and desirably blind signal processing algorithms. In this paper, we propose a novel blind iterative unbiased finite impulse response (UFIR) filtering algorithm, which meets the above requirements. Experimental verification is given for both the missing and complete measurement data of the CO concentration. High accuracy and precision of the predictive UFIR estimator are demonstrated in a short time and on a long time scale.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信