鲁棒自适应中心差分粒子滤波

Li Xue, Shesheng Gao, Y. Zhong, R. Jazar, A. Subic
{"title":"鲁棒自适应中心差分粒子滤波","authors":"Li Xue, Shesheng Gao, Y. Zhong, R. Jazar, A. Subic","doi":"10.4018/ijrat.2014010102","DOIUrl":null,"url":null,"abstract":"This paper presents a new robust adaptive central difference particle filtering method for nonlinear systems by combining the concept of robust adaptive estimation with the central difference particle filter. This method obtains system state estimate and covariances using the principle of robust estimation. Subsequently, the importance density is obtained by adjusting the state estimate and covariances through the equivalent weight function and adaptive factor constructed from predicted residuals to control the contributions to the new state estimation from measurement and kinematic model. The proposed method can not only minimize the variance of the importance density distribution to resist the disturbances of systematic noises, but it also fully takes advantage of present measurement information to avoid particle degeneration. Experiments and comparison analysis with the existing methods demonstrate the improved filtering accuracy of the proposed method.","PeriodicalId":249760,"journal":{"name":"Int. J. Robotics Appl. Technol.","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Robust Adaptive Central Difference Particle Filter\",\"authors\":\"Li Xue, Shesheng Gao, Y. Zhong, R. Jazar, A. Subic\",\"doi\":\"10.4018/ijrat.2014010102\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a new robust adaptive central difference particle filtering method for nonlinear systems by combining the concept of robust adaptive estimation with the central difference particle filter. This method obtains system state estimate and covariances using the principle of robust estimation. Subsequently, the importance density is obtained by adjusting the state estimate and covariances through the equivalent weight function and adaptive factor constructed from predicted residuals to control the contributions to the new state estimation from measurement and kinematic model. The proposed method can not only minimize the variance of the importance density distribution to resist the disturbances of systematic noises, but it also fully takes advantage of present measurement information to avoid particle degeneration. Experiments and comparison analysis with the existing methods demonstrate the improved filtering accuracy of the proposed method.\",\"PeriodicalId\":249760,\"journal\":{\"name\":\"Int. J. Robotics Appl. Technol.\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Robotics Appl. Technol.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/ijrat.2014010102\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Robotics Appl. Technol.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijrat.2014010102","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

将鲁棒自适应估计的概念与中心差分粒子滤波相结合,提出了一种新的非线性系统鲁棒自适应中心差分粒子滤波方法。该方法利用鲁棒估计原理获得系统状态估计和协方差。然后,通过由预测残差构造的等效权函数和自适应因子,通过调整状态估计和协方差得到重要密度,以控制测量模型和运动学模型对新状态估计的贡献。该方法既能减小重要密度分布的方差以抵抗系统噪声的干扰,又能充分利用现有的测量信息避免粒子退化。实验和与现有方法的对比分析表明,该方法提高了滤波精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Robust Adaptive Central Difference Particle Filter
This paper presents a new robust adaptive central difference particle filtering method for nonlinear systems by combining the concept of robust adaptive estimation with the central difference particle filter. This method obtains system state estimate and covariances using the principle of robust estimation. Subsequently, the importance density is obtained by adjusting the state estimate and covariances through the equivalent weight function and adaptive factor constructed from predicted residuals to control the contributions to the new state estimation from measurement and kinematic model. The proposed method can not only minimize the variance of the importance density distribution to resist the disturbances of systematic noises, but it also fully takes advantage of present measurement information to avoid particle degeneration. Experiments and comparison analysis with the existing methods demonstrate the improved filtering accuracy of the proposed method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信