数据中心网络中基于模型的吞吐量预测

Piotr Rygielski, Samuel Kounev, S. Zschaler
{"title":"数据中心网络中基于模型的吞吐量预测","authors":"Piotr Rygielski, Samuel Kounev, S. Zschaler","doi":"10.1109/IWMN.2013.6663797","DOIUrl":null,"url":null,"abstract":"In this paper, we address the problem of performance analysis in computer networks. We present a new meta-model designed for the performance modeling of network infrastructures in modern data centers. Instances of our metamodel can be automatically transformed into stochastic simulation models for performance prediction. We evaluate the approach in a case study of a road traffic monitoring system. We compare the performance prediction results against the real system and a benchmark. The presented results show that our approach, despite of introducing many modeling abstractions, delivers predictions with errors less than 32% and correctly detects bottlenecks in the modeled network.","PeriodicalId":218660,"journal":{"name":"2013 IEEE International Workshop on Measurements & Networking (M&N)","volume":"88 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"Model-based throughput prediction in data center networks\",\"authors\":\"Piotr Rygielski, Samuel Kounev, S. Zschaler\",\"doi\":\"10.1109/IWMN.2013.6663797\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we address the problem of performance analysis in computer networks. We present a new meta-model designed for the performance modeling of network infrastructures in modern data centers. Instances of our metamodel can be automatically transformed into stochastic simulation models for performance prediction. We evaluate the approach in a case study of a road traffic monitoring system. We compare the performance prediction results against the real system and a benchmark. The presented results show that our approach, despite of introducing many modeling abstractions, delivers predictions with errors less than 32% and correctly detects bottlenecks in the modeled network.\",\"PeriodicalId\":218660,\"journal\":{\"name\":\"2013 IEEE International Workshop on Measurements & Networking (M&N)\",\"volume\":\"88 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE International Workshop on Measurements & Networking (M&N)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IWMN.2013.6663797\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Workshop on Measurements & Networking (M&N)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWMN.2013.6663797","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

摘要

本文主要研究计算机网络中的性能分析问题。提出了一种新的元模型,用于现代数据中心网络基础设施的性能建模。我们的元模型实例可以自动转换为随机模拟模型,用于性能预测。我们在一个道路交通监控系统的案例研究中评估了这种方法。我们将性能预测结果与实际系统和基准进行比较。给出的结果表明,尽管引入了许多建模抽象,我们的方法提供的预测误差小于32%,并正确地检测到建模网络中的瓶颈。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Model-based throughput prediction in data center networks
In this paper, we address the problem of performance analysis in computer networks. We present a new meta-model designed for the performance modeling of network infrastructures in modern data centers. Instances of our metamodel can be automatically transformed into stochastic simulation models for performance prediction. We evaluate the approach in a case study of a road traffic monitoring system. We compare the performance prediction results against the real system and a benchmark. The presented results show that our approach, despite of introducing many modeling abstractions, delivers predictions with errors less than 32% and correctly detects bottlenecks in the modeled network.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信