用于睡意检测系统的低成本嵌入式眼电眨眼脉冲分类器的研制

K. M. Tabal, J. D. dela Cruz
{"title":"用于睡意检测系统的低成本嵌入式眼电眨眼脉冲分类器的研制","authors":"K. M. Tabal, J. D. dela Cruz","doi":"10.1109/CSPA.2017.8064919","DOIUrl":null,"url":null,"abstract":"This paper discusses the development of a low-cost embedded-based electrooculogram (EOG) blink pulse classifier. A signal conditioning circuit from a single quad operational amplifier (Op-Amp) and an Arduino based on the ATmega32u4 AVR 8-bit microcontroller board comprised the major components of the embedded-based classifier. The evaluation of the nearest neighbor algorithm classifier resulted to an accuracy of 87.14%, precision of 93.33% and sensitivity of 80.00%. Further, based on the participants who evaluated the drowsiness detection system the results were 3.38 and 4.13 with verbal interpretations of comfortable and very convenient respectively.","PeriodicalId":445522,"journal":{"name":"2017 IEEE 13th International Colloquium on Signal Processing & its Applications (CSPA)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Development of low-cost embedded-based electrooculogram blink pulse classifier for drowsiness detection system\",\"authors\":\"K. M. Tabal, J. D. dela Cruz\",\"doi\":\"10.1109/CSPA.2017.8064919\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper discusses the development of a low-cost embedded-based electrooculogram (EOG) blink pulse classifier. A signal conditioning circuit from a single quad operational amplifier (Op-Amp) and an Arduino based on the ATmega32u4 AVR 8-bit microcontroller board comprised the major components of the embedded-based classifier. The evaluation of the nearest neighbor algorithm classifier resulted to an accuracy of 87.14%, precision of 93.33% and sensitivity of 80.00%. Further, based on the participants who evaluated the drowsiness detection system the results were 3.38 and 4.13 with verbal interpretations of comfortable and very convenient respectively.\",\"PeriodicalId\":445522,\"journal\":{\"name\":\"2017 IEEE 13th International Colloquium on Signal Processing & its Applications (CSPA)\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE 13th International Colloquium on Signal Processing & its Applications (CSPA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CSPA.2017.8064919\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 13th International Colloquium on Signal Processing & its Applications (CSPA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSPA.2017.8064919","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

本文讨论了一种低成本嵌入式眼电脉冲分类器的研制。基于ATmega32u4 AVR 8位微控制器板的单四运放(Op-Amp)信号调理电路和Arduino组成了基于嵌入式分类器的主要组件。结果表明,最近邻分类器的准确率为87.14%,精密度为93.33%,灵敏度为80.00%。此外,根据评估困倦检测系统的参与者,结果分别为3.38和4.13,口头解释为舒适和非常方便。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Development of low-cost embedded-based electrooculogram blink pulse classifier for drowsiness detection system
This paper discusses the development of a low-cost embedded-based electrooculogram (EOG) blink pulse classifier. A signal conditioning circuit from a single quad operational amplifier (Op-Amp) and an Arduino based on the ATmega32u4 AVR 8-bit microcontroller board comprised the major components of the embedded-based classifier. The evaluation of the nearest neighbor algorithm classifier resulted to an accuracy of 87.14%, precision of 93.33% and sensitivity of 80.00%. Further, based on the participants who evaluated the drowsiness detection system the results were 3.38 and 4.13 with verbal interpretations of comfortable and very convenient respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信