利用E-HowNet本体和维基百科资源生成选择题的基于学习的框架

Min-Huang Chu, Wen-Yu Chen, Shou-de Lin
{"title":"利用E-HowNet本体和维基百科资源生成选择题的基于学习的框架","authors":"Min-Huang Chu, Wen-Yu Chen, Shou-de Lin","doi":"10.1109/TAAI.2012.38","DOIUrl":null,"url":null,"abstract":"This paper proposes a framework that automatically generates multiple-choice questions. Unlike most other similar works that focus on generating questions for English proficiency tests, this paper provides a framework to generate factual questions in Chinese. We have decomposed this problem into several sub-tasks: a) the identification of sentences that contain factual knowledge, b) the identification of the query term from each factual sentence, and c) the generation of distractors. Learning-based approaches are applied to address the first two problems. We then propose a way to generate distractors by using E-How Net ontology database and Wikipedia sources. The system was evaluated through user study and test theory, and achieved a satisfaction rate of up to 70.6%.","PeriodicalId":385063,"journal":{"name":"2012 Conference on Technologies and Applications of Artificial Intelligence","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A Learning-Based Framework to Utilize E-HowNet Ontology and Wikipedia Sources to Generate Multiple-Choice Factual Questions\",\"authors\":\"Min-Huang Chu, Wen-Yu Chen, Shou-de Lin\",\"doi\":\"10.1109/TAAI.2012.38\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a framework that automatically generates multiple-choice questions. Unlike most other similar works that focus on generating questions for English proficiency tests, this paper provides a framework to generate factual questions in Chinese. We have decomposed this problem into several sub-tasks: a) the identification of sentences that contain factual knowledge, b) the identification of the query term from each factual sentence, and c) the generation of distractors. Learning-based approaches are applied to address the first two problems. We then propose a way to generate distractors by using E-How Net ontology database and Wikipedia sources. The system was evaluated through user study and test theory, and achieved a satisfaction rate of up to 70.6%.\",\"PeriodicalId\":385063,\"journal\":{\"name\":\"2012 Conference on Technologies and Applications of Artificial Intelligence\",\"volume\":\"38 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 Conference on Technologies and Applications of Artificial Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TAAI.2012.38\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 Conference on Technologies and Applications of Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TAAI.2012.38","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本文提出了一个自动生成选择题的框架。与大多数其他类似的研究不同,本文提供了一个生成中文事实题的框架。我们将这个问题分解为几个子任务:a)包含事实知识的句子的识别,b)从每个事实句子中识别查询词,以及c)干扰物的生成。基于学习的方法用于解决前两个问题。然后,我们提出了一种利用E-How Net本体数据库和维基百科资源生成干扰物的方法。通过用户研究和测试理论对系统进行了评价,满意率达70.6%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Learning-Based Framework to Utilize E-HowNet Ontology and Wikipedia Sources to Generate Multiple-Choice Factual Questions
This paper proposes a framework that automatically generates multiple-choice questions. Unlike most other similar works that focus on generating questions for English proficiency tests, this paper provides a framework to generate factual questions in Chinese. We have decomposed this problem into several sub-tasks: a) the identification of sentences that contain factual knowledge, b) the identification of the query term from each factual sentence, and c) the generation of distractors. Learning-based approaches are applied to address the first two problems. We then propose a way to generate distractors by using E-How Net ontology database and Wikipedia sources. The system was evaluated through user study and test theory, and achieved a satisfaction rate of up to 70.6%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信