时变矩阵广义Sinkhorn标度的离散张神经动力学算法

Ji Lu, Jianzhen Xiao, Canhui Chen, Mingzhi Mao, Yunong Zhang
{"title":"时变矩阵广义Sinkhorn标度的离散张神经动力学算法","authors":"Ji Lu, Jianzhen Xiao, Canhui Chen, Mingzhi Mao, Yunong Zhang","doi":"10.1109/ICIST55546.2022.9926881","DOIUrl":null,"url":null,"abstract":"In this paper, we first introduce a continuous model for time-varying matrix generalized Sinkhorn scaling (TVMGSS) on the basis of the continuous Zhang neural dynamics (ZND) model. Subsequently, a high-precision 10-instant Zhang time discretization (ZTD) formula with theoretical analysis is presented. Further, we utilize the 10-instant ZTD formula to discretize the continuous ZND model, resulting in a discrete ZND algorithm named 10-instant discrete ZND (10IDZND) algorithm for TVMGSS. For comparison, two other time discretization formulas are also considered, and the corresponding discrete algorithms for TVMGSS are derived. The comparative numerical experiments are performed, and the results substantiate the effectiveness and superior accuracy of the 10IDZND algorithm. In addition, we verify the effectiveness of the 10IDZND algorithm for higher-dimensional TVMGSS through numerical experiments. Finally, we experimentally investigate the effects of the design parameters and the sampling period on the convergence of the 10IDZND algorithm.","PeriodicalId":211213,"journal":{"name":"2022 12th International Conference on Information Science and Technology (ICIST)","volume":"444 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Discrete Zhang Neural Dynamics Algorithms for Time-Varying Matrix Generalized Sinkhorn Scaling\",\"authors\":\"Ji Lu, Jianzhen Xiao, Canhui Chen, Mingzhi Mao, Yunong Zhang\",\"doi\":\"10.1109/ICIST55546.2022.9926881\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we first introduce a continuous model for time-varying matrix generalized Sinkhorn scaling (TVMGSS) on the basis of the continuous Zhang neural dynamics (ZND) model. Subsequently, a high-precision 10-instant Zhang time discretization (ZTD) formula with theoretical analysis is presented. Further, we utilize the 10-instant ZTD formula to discretize the continuous ZND model, resulting in a discrete ZND algorithm named 10-instant discrete ZND (10IDZND) algorithm for TVMGSS. For comparison, two other time discretization formulas are also considered, and the corresponding discrete algorithms for TVMGSS are derived. The comparative numerical experiments are performed, and the results substantiate the effectiveness and superior accuracy of the 10IDZND algorithm. In addition, we verify the effectiveness of the 10IDZND algorithm for higher-dimensional TVMGSS through numerical experiments. Finally, we experimentally investigate the effects of the design parameters and the sampling period on the convergence of the 10IDZND algorithm.\",\"PeriodicalId\":211213,\"journal\":{\"name\":\"2022 12th International Conference on Information Science and Technology (ICIST)\",\"volume\":\"444 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 12th International Conference on Information Science and Technology (ICIST)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIST55546.2022.9926881\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 12th International Conference on Information Science and Technology (ICIST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIST55546.2022.9926881","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文首先在连续张神经动力学(ZND)模型的基础上,引入了时变矩阵广义Sinkhorn标度(TVMGSS)的连续模型。在此基础上,提出了高精度的10瞬时张时间离散化(ZTD)公式并进行了理论分析。进一步,我们利用10-instant ZTD公式对连续ZND模型进行离散化,得到了一种离散ZND算法,称为TVMGSS的10-instant离散ZND (10IDZND)算法。为了比较,还考虑了另外两种时间离散化公式,并推导了相应的TVMGSS离散化算法。通过数值对比实验,验证了10IDZND算法的有效性和较高的精度。此外,通过数值实验验证了10IDZND算法在高维TVMGSS中的有效性。最后,通过实验研究了设计参数和采样周期对10IDZND算法收敛性的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Discrete Zhang Neural Dynamics Algorithms for Time-Varying Matrix Generalized Sinkhorn Scaling
In this paper, we first introduce a continuous model for time-varying matrix generalized Sinkhorn scaling (TVMGSS) on the basis of the continuous Zhang neural dynamics (ZND) model. Subsequently, a high-precision 10-instant Zhang time discretization (ZTD) formula with theoretical analysis is presented. Further, we utilize the 10-instant ZTD formula to discretize the continuous ZND model, resulting in a discrete ZND algorithm named 10-instant discrete ZND (10IDZND) algorithm for TVMGSS. For comparison, two other time discretization formulas are also considered, and the corresponding discrete algorithms for TVMGSS are derived. The comparative numerical experiments are performed, and the results substantiate the effectiveness and superior accuracy of the 10IDZND algorithm. In addition, we verify the effectiveness of the 10IDZND algorithm for higher-dimensional TVMGSS through numerical experiments. Finally, we experimentally investigate the effects of the design parameters and the sampling period on the convergence of the 10IDZND algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信