{"title":"如何玩任何心理游戏","authors":"Oded Goldreich, S. Micali, A. Wigderson","doi":"10.1145/28395.28420","DOIUrl":null,"url":null,"abstract":"We present a polynomial-time algorithm that, given as a input the description of a game with incomplete information and any number of players, produces a protocol for playing the game that leaks no partial information, provided the majority of the players is honest. Our algorithm automatically solves all the multi-party protocol problems addressed in complexity-based cryptography during the last 10 years. It actually is a completeness theorem for the class of distributed protocols with honest majority. Such completeness theorem is optimal in the sense that, if the majority of the players is not honest, some protocol problems have no efficient solution [C].","PeriodicalId":161795,"journal":{"name":"Proceedings of the nineteenth annual ACM symposium on Theory of computing","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1987-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4497","resultStr":"{\"title\":\"How to play ANY mental game\",\"authors\":\"Oded Goldreich, S. Micali, A. Wigderson\",\"doi\":\"10.1145/28395.28420\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a polynomial-time algorithm that, given as a input the description of a game with incomplete information and any number of players, produces a protocol for playing the game that leaks no partial information, provided the majority of the players is honest. Our algorithm automatically solves all the multi-party protocol problems addressed in complexity-based cryptography during the last 10 years. It actually is a completeness theorem for the class of distributed protocols with honest majority. Such completeness theorem is optimal in the sense that, if the majority of the players is not honest, some protocol problems have no efficient solution [C].\",\"PeriodicalId\":161795,\"journal\":{\"name\":\"Proceedings of the nineteenth annual ACM symposium on Theory of computing\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1987-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4497\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the nineteenth annual ACM symposium on Theory of computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/28395.28420\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the nineteenth annual ACM symposium on Theory of computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/28395.28420","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We present a polynomial-time algorithm that, given as a input the description of a game with incomplete information and any number of players, produces a protocol for playing the game that leaks no partial information, provided the majority of the players is honest. Our algorithm automatically solves all the multi-party protocol problems addressed in complexity-based cryptography during the last 10 years. It actually is a completeness theorem for the class of distributed protocols with honest majority. Such completeness theorem is optimal in the sense that, if the majority of the players is not honest, some protocol problems have no efficient solution [C].