生物医学本体网格提高MEDLINE文章的文档聚类质量的比较研究

Illhoi Yoo, Xiaohua Hu
{"title":"生物医学本体网格提高MEDLINE文章的文档聚类质量的比较研究","authors":"Illhoi Yoo, Xiaohua Hu","doi":"10.1109/CBMS.2006.62","DOIUrl":null,"url":null,"abstract":"Document clustering has been used for better document retrieval, document browsing, and text mining. In this paper, we investigate if biomedical ontology MeSH improves the clustering quality for MEDLINE articles. For this investigation, we perform a comprehensive comparison study of various document clustering approaches such as hierarchical clustering methods (single-link, complete-link, and complete link), bisecting K-means, K-means, and suffix tree clustering (STC) in terms of efficiency, effectiveness, and scalability. According to our experiment results, biomedical ontology MeSH significantly enhances clustering quality on biomedical documents. In addition, our results show that decent document clustering approaches, such as bisecting K-means, K-means and STC, gains some benefit from MeSH ontology while hierarchical algorithms showing the poorest clustering quality do not reap the benefit of MeSH ontology","PeriodicalId":208693,"journal":{"name":"19th IEEE Symposium on Computer-Based Medical Systems (CBMS'06)","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":"{\"title\":\"Biomedical Ontology MeSH Improves Document Clustering Qualify on MEDLINE Articles: A Comparison Study\",\"authors\":\"Illhoi Yoo, Xiaohua Hu\",\"doi\":\"10.1109/CBMS.2006.62\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Document clustering has been used for better document retrieval, document browsing, and text mining. In this paper, we investigate if biomedical ontology MeSH improves the clustering quality for MEDLINE articles. For this investigation, we perform a comprehensive comparison study of various document clustering approaches such as hierarchical clustering methods (single-link, complete-link, and complete link), bisecting K-means, K-means, and suffix tree clustering (STC) in terms of efficiency, effectiveness, and scalability. According to our experiment results, biomedical ontology MeSH significantly enhances clustering quality on biomedical documents. In addition, our results show that decent document clustering approaches, such as bisecting K-means, K-means and STC, gains some benefit from MeSH ontology while hierarchical algorithms showing the poorest clustering quality do not reap the benefit of MeSH ontology\",\"PeriodicalId\":208693,\"journal\":{\"name\":\"19th IEEE Symposium on Computer-Based Medical Systems (CBMS'06)\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-06-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"23\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"19th IEEE Symposium on Computer-Based Medical Systems (CBMS'06)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CBMS.2006.62\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"19th IEEE Symposium on Computer-Based Medical Systems (CBMS'06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CBMS.2006.62","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23

摘要

文档聚类已被用于更好的文档检索、文档浏览和文本挖掘。在本文中,我们研究生物医学本体MeSH是否提高MEDLINE文章的聚类质量。在这项研究中,我们对各种文档聚类方法进行了全面的比较研究,如层次聚类方法(单链接、完整链接和完整链接)、分割K-means、K-means和后缀树聚类(STC)的效率、有效性和可扩展性。实验结果表明,生物医学本体MeSH显著提高了生物医学文档的聚类质量。此外,我们的结果表明,体面的文档聚类方法,如分割K-means、K-means和STC,从MeSH本体中获得了一些好处,而表现出最差聚类质量的分层算法并没有从MeSH本体中获得好处
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Biomedical Ontology MeSH Improves Document Clustering Qualify on MEDLINE Articles: A Comparison Study
Document clustering has been used for better document retrieval, document browsing, and text mining. In this paper, we investigate if biomedical ontology MeSH improves the clustering quality for MEDLINE articles. For this investigation, we perform a comprehensive comparison study of various document clustering approaches such as hierarchical clustering methods (single-link, complete-link, and complete link), bisecting K-means, K-means, and suffix tree clustering (STC) in terms of efficiency, effectiveness, and scalability. According to our experiment results, biomedical ontology MeSH significantly enhances clustering quality on biomedical documents. In addition, our results show that decent document clustering approaches, such as bisecting K-means, K-means and STC, gains some benefit from MeSH ontology while hierarchical algorithms showing the poorest clustering quality do not reap the benefit of MeSH ontology
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信