在NVM应用的晶体in - ga - zn氧化物场效应管中使用HfOx的吸氢方法

T. Ono, Y. Yanagisawa, Y. Komatsu, T. Aoki, Y. Jimbo, S. Ito, Y. Yamane, N. Okuno, H. Kunitake, H. Komagata, S. Sasagawa, S. Yamazaki
{"title":"在NVM应用的晶体in - ga - zn氧化物场效应管中使用HfOx的吸氢方法","authors":"T. Ono, Y. Yanagisawa, Y. Komatsu, T. Aoki, Y. Jimbo, S. Ito, Y. Yamane, N. Okuno, H. Kunitake, H. Komagata, S. Sasagawa, S. Yamazaki","doi":"10.1109/IEDM13553.2020.9372030","DOIUrl":null,"url":null,"abstract":"We fabricated and evaluated an oxide semiconductor field effect transistor (OSFET) with a channel of c-axis aligned crystalline In-Ga-Zn oxide (CAAC-IGZO) in order to examine the availability of the OSFET in nonvolatile memories (NVM). A featured extremely low leakage current of the OSFET largely depends on the threshold voltage, and thus controlling the threshold is a key issue. In particular, reducing the hydrogen concentration in and around the CAAC-IGZO layer as much as possible is one of the most important factors leading to threshold controllability and stability improvement in the OSFET. Accordingly, we employed a structure in which the whole OSFET is sealed with a hydrogen barrier film (SiNx) to prevent hydrogen entry from the outside and provided a modified HfOx film that we found serves as a hydrogen absorption layer inside the encapsulation structure. The HfOx film having a high hydrogen absorption capability inside the encapsulation structure resulted in a significant improvement in OSFET reliability. Specifically, the prototype OSFET with a gate length of 43.9 nm had a suppressed threshold variation for 500 hours in the positive gate-bias temperature (+GBT) stress test (150°C, Vgs = 3.63 V, Vds = Vbgs = 0 V). This process enables the control of the hydrogen concentration in the CAAC-IGZO layer and increases the expectation for OSFET mass production.","PeriodicalId":415186,"journal":{"name":"2020 IEEE International Electron Devices Meeting (IEDM)","volume":"118 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Hydrogen Absorption Method Using HfOx in Crystalline In-Ga-Zn Oxide FETs for NVM Applications\",\"authors\":\"T. Ono, Y. Yanagisawa, Y. Komatsu, T. Aoki, Y. Jimbo, S. Ito, Y. Yamane, N. Okuno, H. Kunitake, H. Komagata, S. Sasagawa, S. Yamazaki\",\"doi\":\"10.1109/IEDM13553.2020.9372030\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We fabricated and evaluated an oxide semiconductor field effect transistor (OSFET) with a channel of c-axis aligned crystalline In-Ga-Zn oxide (CAAC-IGZO) in order to examine the availability of the OSFET in nonvolatile memories (NVM). A featured extremely low leakage current of the OSFET largely depends on the threshold voltage, and thus controlling the threshold is a key issue. In particular, reducing the hydrogen concentration in and around the CAAC-IGZO layer as much as possible is one of the most important factors leading to threshold controllability and stability improvement in the OSFET. Accordingly, we employed a structure in which the whole OSFET is sealed with a hydrogen barrier film (SiNx) to prevent hydrogen entry from the outside and provided a modified HfOx film that we found serves as a hydrogen absorption layer inside the encapsulation structure. The HfOx film having a high hydrogen absorption capability inside the encapsulation structure resulted in a significant improvement in OSFET reliability. Specifically, the prototype OSFET with a gate length of 43.9 nm had a suppressed threshold variation for 500 hours in the positive gate-bias temperature (+GBT) stress test (150°C, Vgs = 3.63 V, Vds = Vbgs = 0 V). This process enables the control of the hydrogen concentration in the CAAC-IGZO layer and increases the expectation for OSFET mass production.\",\"PeriodicalId\":415186,\"journal\":{\"name\":\"2020 IEEE International Electron Devices Meeting (IEDM)\",\"volume\":\"118 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE International Electron Devices Meeting (IEDM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IEDM13553.2020.9372030\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Electron Devices Meeting (IEDM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEDM13553.2020.9372030","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

为了检验OSFET在非易失性存储器(NVM)中的可用性,我们制作并评估了带有c轴排列晶体in - ga - zn氧化物(CAAC-IGZO)通道的氧化物半导体场效应晶体管(OSFET)。一个具有极低漏电流特征的OSFET很大程度上取决于阈值电压,因此控制阈值是一个关键问题。特别是,尽可能降低CAAC-IGZO层内及周围的氢浓度是提高OSFET阈值可控性和稳定性的最重要因素之一。因此,我们采用了一种结构,在这种结构中,整个OSFET用氢阻隔膜(SiNx)密封,以防止氢从外部进入,并提供了一种改性的HfOx膜,我们发现它可以作为封装结构内部的氢吸收层。HfOx薄膜在封装结构内部具有较高的吸氢能力,从而显著提高了OSFET的可靠性。具体而言,栅极长度为43.9 nm的OSFET原型在正栅极偏置温度(+GBT)应力测试(150°C, Vgs = 3.63 V, Vds = Vbgs = 0 V)中,阈值变化被抑制了500小时,该工艺可以控制CAAC-IGZO层中的氢浓度,提高了OSFET量产的期望。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hydrogen Absorption Method Using HfOx in Crystalline In-Ga-Zn Oxide FETs for NVM Applications
We fabricated and evaluated an oxide semiconductor field effect transistor (OSFET) with a channel of c-axis aligned crystalline In-Ga-Zn oxide (CAAC-IGZO) in order to examine the availability of the OSFET in nonvolatile memories (NVM). A featured extremely low leakage current of the OSFET largely depends on the threshold voltage, and thus controlling the threshold is a key issue. In particular, reducing the hydrogen concentration in and around the CAAC-IGZO layer as much as possible is one of the most important factors leading to threshold controllability and stability improvement in the OSFET. Accordingly, we employed a structure in which the whole OSFET is sealed with a hydrogen barrier film (SiNx) to prevent hydrogen entry from the outside and provided a modified HfOx film that we found serves as a hydrogen absorption layer inside the encapsulation structure. The HfOx film having a high hydrogen absorption capability inside the encapsulation structure resulted in a significant improvement in OSFET reliability. Specifically, the prototype OSFET with a gate length of 43.9 nm had a suppressed threshold variation for 500 hours in the positive gate-bias temperature (+GBT) stress test (150°C, Vgs = 3.63 V, Vds = Vbgs = 0 V). This process enables the control of the hydrogen concentration in the CAAC-IGZO layer and increases the expectation for OSFET mass production.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信