一种基于形状语义模式正则化的人脸超分辨方法

Chengdong Lan, R. Hu, Zhen Han, Zhongyuan Wang
{"title":"一种基于形状语义模式正则化的人脸超分辨方法","authors":"Chengdong Lan, R. Hu, Zhen Han, Zhongyuan Wang","doi":"10.1109/ICIP.2010.5649896","DOIUrl":null,"url":null,"abstract":"In actual imaging environment, a variety of factors have an impact on the quality of images, which leads to pixel distortion and aliasing. The traditional face super-resolution algorithm only uses the difference of image pixel values as similarity criterion, which degrades similarity and identification of reconstructed facial images. Image semantic information with human understanding, especially structural information, is robust to the degraded pixel values. In this paper, we propose a face super-resolution approach using shape semantic model. This method describes the facial shape as a series of fiducial points on facial image. And shape semantic information of input image is obtained manually. Then a shape semantic regularization is added to the original objective function. The steepest descent method is used to obtain the unified coefficient. Experimental results demonstrate that the proposed method outperforms the traditional schemes significantly both in subjective and objective quality.","PeriodicalId":228308,"journal":{"name":"2010 IEEE International Conference on Image Processing","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"A face super-resolution approach using shape semantic mode regularization\",\"authors\":\"Chengdong Lan, R. Hu, Zhen Han, Zhongyuan Wang\",\"doi\":\"10.1109/ICIP.2010.5649896\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In actual imaging environment, a variety of factors have an impact on the quality of images, which leads to pixel distortion and aliasing. The traditional face super-resolution algorithm only uses the difference of image pixel values as similarity criterion, which degrades similarity and identification of reconstructed facial images. Image semantic information with human understanding, especially structural information, is robust to the degraded pixel values. In this paper, we propose a face super-resolution approach using shape semantic model. This method describes the facial shape as a series of fiducial points on facial image. And shape semantic information of input image is obtained manually. Then a shape semantic regularization is added to the original objective function. The steepest descent method is used to obtain the unified coefficient. Experimental results demonstrate that the proposed method outperforms the traditional schemes significantly both in subjective and objective quality.\",\"PeriodicalId\":228308,\"journal\":{\"name\":\"2010 IEEE International Conference on Image Processing\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE International Conference on Image Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIP.2010.5649896\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Conference on Image Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP.2010.5649896","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

在实际成像环境中,各种因素都会影响图像的质量,从而导致像素失真和混叠。传统的人脸超分辨算法仅以图像像素值的差异作为相似度准则,降低了重构人脸图像的相似度和识别度。人类能够理解的图像语义信息,尤其是结构信息,对退化的像素值具有较强的鲁棒性。本文提出了一种基于形状语义模型的人脸超分辨方法。该方法将面部形状描述为面部图像上的一系列基准点。人工获取输入图像的形状语义信息。然后在原目标函数基础上加入形状语义正则化。采用最陡下降法求统一系数。实验结果表明,该方法在主观质量和客观质量上都明显优于传统方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A face super-resolution approach using shape semantic mode regularization
In actual imaging environment, a variety of factors have an impact on the quality of images, which leads to pixel distortion and aliasing. The traditional face super-resolution algorithm only uses the difference of image pixel values as similarity criterion, which degrades similarity and identification of reconstructed facial images. Image semantic information with human understanding, especially structural information, is robust to the degraded pixel values. In this paper, we propose a face super-resolution approach using shape semantic model. This method describes the facial shape as a series of fiducial points on facial image. And shape semantic information of input image is obtained manually. Then a shape semantic regularization is added to the original objective function. The steepest descent method is used to obtain the unified coefficient. Experimental results demonstrate that the proposed method outperforms the traditional schemes significantly both in subjective and objective quality.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信