{"title":"利用凹形树进行形状检索","authors":"O. Badawy, M. Kamel","doi":"10.1109/ICPR.2004.1334481","DOIUrl":null,"url":null,"abstract":"Concavity trees are well-known abstract structures. This paper proposes a new shape-based image retrieval method based on concavity trees. The proposed method has two main components. The first is an efficient (in terms of space and time) contour-based concavity tree extraction algorithm. The second component is a recursive concavity-tree matching algorithm that returns a distance between two trees. We demonstrate that concavity trees are able to boost the retrieval performance of two feature sets by at least 15% when tested on a database of 625 silhouette images.","PeriodicalId":335842,"journal":{"name":"Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004.","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Shape retrieval using concavity trees\",\"authors\":\"O. Badawy, M. Kamel\",\"doi\":\"10.1109/ICPR.2004.1334481\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Concavity trees are well-known abstract structures. This paper proposes a new shape-based image retrieval method based on concavity trees. The proposed method has two main components. The first is an efficient (in terms of space and time) contour-based concavity tree extraction algorithm. The second component is a recursive concavity-tree matching algorithm that returns a distance between two trees. We demonstrate that concavity trees are able to boost the retrieval performance of two feature sets by at least 15% when tested on a database of 625 silhouette images.\",\"PeriodicalId\":335842,\"journal\":{\"name\":\"Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004.\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICPR.2004.1334481\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPR.2004.1334481","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Concavity trees are well-known abstract structures. This paper proposes a new shape-based image retrieval method based on concavity trees. The proposed method has two main components. The first is an efficient (in terms of space and time) contour-based concavity tree extraction algorithm. The second component is a recursive concavity-tree matching algorithm that returns a distance between two trees. We demonstrate that concavity trees are able to boost the retrieval performance of two feature sets by at least 15% when tested on a database of 625 silhouette images.