关于严格奇异算子的注释

Ersin Kızgut, M. Yurdakul
{"title":"关于严格奇异算子的注释","authors":"Ersin Kızgut, M. Yurdakul","doi":"10.12988/ijma.2017.77103","DOIUrl":null,"url":null,"abstract":"A continuous linear operator $T:E \\to F$ is called strictly singular if it cannot be invertible on any infinite dimensional closed subspace of its domain. In this note we discuss sufficient conditions and consequences of the phenomenon $LB(E,F)=L_s(E,F)$, which means that every continuous linear bounded operator defined on $E$ into $F$ is strictly singular.","PeriodicalId":431531,"journal":{"name":"International Journal of Mathematical Analysis","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Remarks on strictly singular operators\",\"authors\":\"Ersin Kızgut, M. Yurdakul\",\"doi\":\"10.12988/ijma.2017.77103\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A continuous linear operator $T:E \\\\to F$ is called strictly singular if it cannot be invertible on any infinite dimensional closed subspace of its domain. In this note we discuss sufficient conditions and consequences of the phenomenon $LB(E,F)=L_s(E,F)$, which means that every continuous linear bounded operator defined on $E$ into $F$ is strictly singular.\",\"PeriodicalId\":431531,\"journal\":{\"name\":\"International Journal of Mathematical Analysis\",\"volume\":\"40 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Mathematical Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12988/ijma.2017.77103\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mathematical Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12988/ijma.2017.77103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

如果连续线性算子$T:E \to F$在其定义域的任何无限维闭子空间上不能可逆,则称其为严格奇异算子。本文讨论了$LB(E,F)=L_s(E,F)$现象的充分条件和结果,这意味着在$E$上定义为$F$的每一个连续线性有界算子都是严格奇异的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Remarks on strictly singular operators
A continuous linear operator $T:E \to F$ is called strictly singular if it cannot be invertible on any infinite dimensional closed subspace of its domain. In this note we discuss sufficient conditions and consequences of the phenomenon $LB(E,F)=L_s(E,F)$, which means that every continuous linear bounded operator defined on $E$ into $F$ is strictly singular.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信