内存绑定GPU应用的可扩展内核融合

M. Wahib, N. Maruyama
{"title":"内存绑定GPU应用的可扩展内核融合","authors":"M. Wahib, N. Maruyama","doi":"10.1109/SC.2014.21","DOIUrl":null,"url":null,"abstract":"GPU implementations of HPC applications relying on finite difference methods can include tens of kernels that are memory-bound. Kernel fusion can improve performance by reducing data traffic to off-chip memory, kernels that share data arrays are fused to larger kernels where on-chip cache is used to hold the data reused by instructions originating from different kernels. The main challenges are a) searching for the optimal kernel fusions while constrained by data dependencies and kernels' precedences and b) effectively applying kernel fusion to achieve speedup. This paper introduces a problem definition and proposes a scalable method for searching the space of possible kernel fusions to identify optimal kernel fusions for large problems. The paper also proposes a codeless performance upper-bound projection model to achieve effective fusions. Results show that using the proposed scalable method for kernel fusion improved the performance of two real-world applications containing tens of kernels by 1.35x and 1.2x.","PeriodicalId":275261,"journal":{"name":"SC14: International Conference for High Performance Computing, Networking, Storage and Analysis","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"73","resultStr":"{\"title\":\"Scalable Kernel Fusion for Memory-Bound GPU Applications\",\"authors\":\"M. Wahib, N. Maruyama\",\"doi\":\"10.1109/SC.2014.21\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"GPU implementations of HPC applications relying on finite difference methods can include tens of kernels that are memory-bound. Kernel fusion can improve performance by reducing data traffic to off-chip memory, kernels that share data arrays are fused to larger kernels where on-chip cache is used to hold the data reused by instructions originating from different kernels. The main challenges are a) searching for the optimal kernel fusions while constrained by data dependencies and kernels' precedences and b) effectively applying kernel fusion to achieve speedup. This paper introduces a problem definition and proposes a scalable method for searching the space of possible kernel fusions to identify optimal kernel fusions for large problems. The paper also proposes a codeless performance upper-bound projection model to achieve effective fusions. Results show that using the proposed scalable method for kernel fusion improved the performance of two real-world applications containing tens of kernels by 1.35x and 1.2x.\",\"PeriodicalId\":275261,\"journal\":{\"name\":\"SC14: International Conference for High Performance Computing, Networking, Storage and Analysis\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"73\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SC14: International Conference for High Performance Computing, Networking, Storage and Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SC.2014.21\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SC14: International Conference for High Performance Computing, Networking, Storage and Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SC.2014.21","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 73

摘要

依靠有限差分方法的高性能计算应用程序的GPU实现可能包括数十个内存受限的内核。内核融合可以通过减少到片外内存的数据流量来提高性能,共享数据数组的内核被融合到更大的内核中,其中片上缓存用于保存来自不同内核的指令重用的数据。主要的挑战是a)在受数据依赖关系和核优先级约束的情况下寻找最优的核融合;b)有效地应用核融合来实现加速。本文引入了问题的定义,提出了一种可扩展的搜索可能核融合空间的方法,以识别大型问题的最优核融合。为了实现有效的融合,本文还提出了一种无编码性能上界投影模型。结果表明,使用所提出的可扩展核融合方法将两个包含数十个核的实际应用程序的性能分别提高了1.35倍和1.2倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Scalable Kernel Fusion for Memory-Bound GPU Applications
GPU implementations of HPC applications relying on finite difference methods can include tens of kernels that are memory-bound. Kernel fusion can improve performance by reducing data traffic to off-chip memory, kernels that share data arrays are fused to larger kernels where on-chip cache is used to hold the data reused by instructions originating from different kernels. The main challenges are a) searching for the optimal kernel fusions while constrained by data dependencies and kernels' precedences and b) effectively applying kernel fusion to achieve speedup. This paper introduces a problem definition and proposes a scalable method for searching the space of possible kernel fusions to identify optimal kernel fusions for large problems. The paper also proposes a codeless performance upper-bound projection model to achieve effective fusions. Results show that using the proposed scalable method for kernel fusion improved the performance of two real-world applications containing tens of kernels by 1.35x and 1.2x.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信