微波单像素成像的压缩反卷积方法

H. Alqadah, J. Bobak, S. Rudolph, M. Nurnberger
{"title":"微波单像素成像的压缩反卷积方法","authors":"H. Alqadah, J. Bobak, S. Rudolph, M. Nurnberger","doi":"10.1109/APWC52648.2021.9539812","DOIUrl":null,"url":null,"abstract":"This work presents a retrieval algorithm intended for space-borne passive microwave single pixel imaging (MSPI). While prior work has focused on conventional sparse- regularization algorithms for retrieving brightness temperature scenes compressively sensed by MSPI [1], here we seek to expand the approach to mitigate resolution corruption introduced by the sensing patterns of the proposed aperture. We conduct a study of the approach using a compressive total-variation (TV) algorithm applied to model brightness temperature data and antenna patterns generated by a computational electromagnetic (EM) model. Early results indicate improvement in reconstruction quality.","PeriodicalId":253455,"journal":{"name":"2021 IEEE-APS Topical Conference on Antennas and Propagation in Wireless Communications (APWC)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Compressive Deconvolution Approach for Microwave Single-Pixel Imaging\",\"authors\":\"H. Alqadah, J. Bobak, S. Rudolph, M. Nurnberger\",\"doi\":\"10.1109/APWC52648.2021.9539812\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work presents a retrieval algorithm intended for space-borne passive microwave single pixel imaging (MSPI). While prior work has focused on conventional sparse- regularization algorithms for retrieving brightness temperature scenes compressively sensed by MSPI [1], here we seek to expand the approach to mitigate resolution corruption introduced by the sensing patterns of the proposed aperture. We conduct a study of the approach using a compressive total-variation (TV) algorithm applied to model brightness temperature data and antenna patterns generated by a computational electromagnetic (EM) model. Early results indicate improvement in reconstruction quality.\",\"PeriodicalId\":253455,\"journal\":{\"name\":\"2021 IEEE-APS Topical Conference on Antennas and Propagation in Wireless Communications (APWC)\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE-APS Topical Conference on Antennas and Propagation in Wireless Communications (APWC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/APWC52648.2021.9539812\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE-APS Topical Conference on Antennas and Propagation in Wireless Communications (APWC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APWC52648.2021.9539812","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种用于星载被动微波单像素成像(MSPI)的检索算法。虽然之前的工作主要集中在传统的稀疏正则化算法上,用于检索由MSPI压缩感知的亮度温度场景[1],但在这里,我们寻求扩展该方法,以减轻由所提出的孔径感知模式引入的分辨率损坏。我们使用压缩总变分(TV)算法对该方法进行了研究,该算法应用于由计算电磁(EM)模型生成的模型亮度温度数据和天线图。早期结果表明重建质量有所改善。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Compressive Deconvolution Approach for Microwave Single-Pixel Imaging
This work presents a retrieval algorithm intended for space-borne passive microwave single pixel imaging (MSPI). While prior work has focused on conventional sparse- regularization algorithms for retrieving brightness temperature scenes compressively sensed by MSPI [1], here we seek to expand the approach to mitigate resolution corruption introduced by the sensing patterns of the proposed aperture. We conduct a study of the approach using a compressive total-variation (TV) algorithm applied to model brightness temperature data and antenna patterns generated by a computational electromagnetic (EM) model. Early results indicate improvement in reconstruction quality.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信