{"title":"一种改进的多线程BGP路由表并行访问技术","authors":"L. Gao, Ming-che Lai, Z. Gong","doi":"10.1109/ICPADS.2009.81","DOIUrl":null,"url":null,"abstract":"The stringent requirement for the high efficiency of routing protocol on Internet will be satisfied by exploiting the Threaded Border Gateway Protocol (TBGP) on multi-cores. Since the TBGP performance is restricted by a mass of contentions when racing to access the routing table, a highly-efficient parallel access approach is originally proposed to achieve the ultra-high route processing speed. In this paper, a novel routing table structure consisting of two-level tries is presented for fast parallel access, and a heuristic-based divide-and-recombine algorithm is devised to balance the table accesses and release the contentions, thereby accelerating the parallel route update of multi-threading. By modifying the typical table operations such as lookup, insert, etc., the correctness of two-level tries table is validated according to the operation behaviors of traditional routing table. Experimental results on dual quad-core Xeon server show that the parallel access contentions decrease sharply by 92.5% versus traditional routing table, and the maximal update time per thread is obviously reduced by 56.8% on average with little overhead. Then, the throughput of BGP update message is measured to be improved by about 169%, delivering significant performance improvement of BGP.","PeriodicalId":281075,"journal":{"name":"International Conference on Parallel and Distributed Systems","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"An Improved Parallel Access Technology on Routing Table for Threaded BGP\",\"authors\":\"L. Gao, Ming-che Lai, Z. Gong\",\"doi\":\"10.1109/ICPADS.2009.81\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The stringent requirement for the high efficiency of routing protocol on Internet will be satisfied by exploiting the Threaded Border Gateway Protocol (TBGP) on multi-cores. Since the TBGP performance is restricted by a mass of contentions when racing to access the routing table, a highly-efficient parallel access approach is originally proposed to achieve the ultra-high route processing speed. In this paper, a novel routing table structure consisting of two-level tries is presented for fast parallel access, and a heuristic-based divide-and-recombine algorithm is devised to balance the table accesses and release the contentions, thereby accelerating the parallel route update of multi-threading. By modifying the typical table operations such as lookup, insert, etc., the correctness of two-level tries table is validated according to the operation behaviors of traditional routing table. Experimental results on dual quad-core Xeon server show that the parallel access contentions decrease sharply by 92.5% versus traditional routing table, and the maximal update time per thread is obviously reduced by 56.8% on average with little overhead. Then, the throughput of BGP update message is measured to be improved by about 169%, delivering significant performance improvement of BGP.\",\"PeriodicalId\":281075,\"journal\":{\"name\":\"International Conference on Parallel and Distributed Systems\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Parallel and Distributed Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICPADS.2009.81\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Parallel and Distributed Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPADS.2009.81","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An Improved Parallel Access Technology on Routing Table for Threaded BGP
The stringent requirement for the high efficiency of routing protocol on Internet will be satisfied by exploiting the Threaded Border Gateway Protocol (TBGP) on multi-cores. Since the TBGP performance is restricted by a mass of contentions when racing to access the routing table, a highly-efficient parallel access approach is originally proposed to achieve the ultra-high route processing speed. In this paper, a novel routing table structure consisting of two-level tries is presented for fast parallel access, and a heuristic-based divide-and-recombine algorithm is devised to balance the table accesses and release the contentions, thereby accelerating the parallel route update of multi-threading. By modifying the typical table operations such as lookup, insert, etc., the correctness of two-level tries table is validated according to the operation behaviors of traditional routing table. Experimental results on dual quad-core Xeon server show that the parallel access contentions decrease sharply by 92.5% versus traditional routing table, and the maximal update time per thread is obviously reduced by 56.8% on average with little overhead. Then, the throughput of BGP update message is measured to be improved by about 169%, delivering significant performance improvement of BGP.