Hao Wang, C. Liu, Zipeng Dai, Jian Tang, Guoren Wang
{"title":"基于分布式深度强化学习的节能3D车辆众包灾害响应","authors":"Hao Wang, C. Liu, Zipeng Dai, Jian Tang, Guoren Wang","doi":"10.1145/3447548.3467070","DOIUrl":null,"url":null,"abstract":"Fast and efficient access to environmental and life data is key to the successful disaster response. Vehicular crowdsourcing (VC) by a group of unmanned vehicles (UVs) like drones and unmanned ground vehicles to collect these data from Point-of-Interests (PoIs) e.g., possible survivor spots and fire site, provides an efficient way to assist disaster rescue. In this paper, we explicitly consider to navigate a group of UVs in a 3-dimensional (3D) disaster workzone to maximize the amount of collected data, geographical fairness, energy efficiency, while minimizing data dropout due to limited transmission rate. We propose DRL-DisasterVC(3D), a distributed deep reinforcement learning framework, with a repetitive experience replay (RER) to improve learning efficiency, and a clipped target network to increase learning stability. We also use a 3D convolutional neural network (3D CNN) with multi-head-relational attention (MHRA) for spatial modeling, and add auxiliary pixel control (PC) for spatial exploration. We designed a novel disaster response simulator, called \"DisasterSim\", and conduct extensive experiments to show that DRL-DisasterVC(3D) outperforms all five baselines in terms of energy efficiency when varying the numbers of UVs, PoIs and SNR threshold.","PeriodicalId":421090,"journal":{"name":"Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining","volume":"87 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Energy-Efficient 3D Vehicular Crowdsourcing for Disaster Response by Distributed Deep Reinforcement Learning\",\"authors\":\"Hao Wang, C. Liu, Zipeng Dai, Jian Tang, Guoren Wang\",\"doi\":\"10.1145/3447548.3467070\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fast and efficient access to environmental and life data is key to the successful disaster response. Vehicular crowdsourcing (VC) by a group of unmanned vehicles (UVs) like drones and unmanned ground vehicles to collect these data from Point-of-Interests (PoIs) e.g., possible survivor spots and fire site, provides an efficient way to assist disaster rescue. In this paper, we explicitly consider to navigate a group of UVs in a 3-dimensional (3D) disaster workzone to maximize the amount of collected data, geographical fairness, energy efficiency, while minimizing data dropout due to limited transmission rate. We propose DRL-DisasterVC(3D), a distributed deep reinforcement learning framework, with a repetitive experience replay (RER) to improve learning efficiency, and a clipped target network to increase learning stability. We also use a 3D convolutional neural network (3D CNN) with multi-head-relational attention (MHRA) for spatial modeling, and add auxiliary pixel control (PC) for spatial exploration. We designed a novel disaster response simulator, called \\\"DisasterSim\\\", and conduct extensive experiments to show that DRL-DisasterVC(3D) outperforms all five baselines in terms of energy efficiency when varying the numbers of UVs, PoIs and SNR threshold.\",\"PeriodicalId\":421090,\"journal\":{\"name\":\"Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining\",\"volume\":\"87 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3447548.3467070\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3447548.3467070","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Energy-Efficient 3D Vehicular Crowdsourcing for Disaster Response by Distributed Deep Reinforcement Learning
Fast and efficient access to environmental and life data is key to the successful disaster response. Vehicular crowdsourcing (VC) by a group of unmanned vehicles (UVs) like drones and unmanned ground vehicles to collect these data from Point-of-Interests (PoIs) e.g., possible survivor spots and fire site, provides an efficient way to assist disaster rescue. In this paper, we explicitly consider to navigate a group of UVs in a 3-dimensional (3D) disaster workzone to maximize the amount of collected data, geographical fairness, energy efficiency, while minimizing data dropout due to limited transmission rate. We propose DRL-DisasterVC(3D), a distributed deep reinforcement learning framework, with a repetitive experience replay (RER) to improve learning efficiency, and a clipped target network to increase learning stability. We also use a 3D convolutional neural network (3D CNN) with multi-head-relational attention (MHRA) for spatial modeling, and add auxiliary pixel control (PC) for spatial exploration. We designed a novel disaster response simulator, called "DisasterSim", and conduct extensive experiments to show that DRL-DisasterVC(3D) outperforms all five baselines in terms of energy efficiency when varying the numbers of UVs, PoIs and SNR threshold.