{"title":"四边形共形模的计算","authors":"Ioane Shengelia","doi":"10.22323/1.394.0016","DOIUrl":null,"url":null,"abstract":"In this paper we consider classification of general topological quadrilaterals by conformal moduli and give one possible method of the numerical computation of this conformal invariant of quadrilaterals by elliptic integral of the first kind. We clarify relation between conformal moduli and AGM and give some examples.","PeriodicalId":127771,"journal":{"name":"Proceedings of RDP online workshop \"Recent Advances in Mathematical Physics\" — PoS(Regio2020)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Computation on conformal moduli of Quadrilaterals\",\"authors\":\"Ioane Shengelia\",\"doi\":\"10.22323/1.394.0016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we consider classification of general topological quadrilaterals by conformal moduli and give one possible method of the numerical computation of this conformal invariant of quadrilaterals by elliptic integral of the first kind. We clarify relation between conformal moduli and AGM and give some examples.\",\"PeriodicalId\":127771,\"journal\":{\"name\":\"Proceedings of RDP online workshop \\\"Recent Advances in Mathematical Physics\\\" — PoS(Regio2020)\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of RDP online workshop \\\"Recent Advances in Mathematical Physics\\\" — PoS(Regio2020)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22323/1.394.0016\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of RDP online workshop \"Recent Advances in Mathematical Physics\" — PoS(Regio2020)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22323/1.394.0016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
In this paper we consider classification of general topological quadrilaterals by conformal moduli and give one possible method of the numerical computation of this conformal invariant of quadrilaterals by elliptic integral of the first kind. We clarify relation between conformal moduli and AGM and give some examples.