基于变化树的传感器网络流优化

Albert Williams, D. Towsley
{"title":"基于变化树的传感器网络流优化","authors":"Albert Williams, D. Towsley","doi":"10.1109/MILCOM52596.2021.9653006","DOIUrl":null,"url":null,"abstract":"Military sensor networks often operate in resource challenged environments. This poses the problem of how to allocate resources to sensors flow to accomplish a mission. In this paper we consider a set of sensors that communicate observations up a tree to a fusion center. The value of the mission is modeled by a separable increasing concave functions and we develop a low complexity one step algorithm that allocates link capacities to each sensor so as to maximize this function. By limiting ourselves to a tree topology, we derive several important benefits, including the ability to quickly adapt to changes in utility functions or topology, and in a straightforward way to run our algorithm in a parallel, distributed manner over the network with little communication overhead and no centralized planning.","PeriodicalId":187645,"journal":{"name":"MILCOM 2021 - 2021 IEEE Military Communications Conference (MILCOM)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimizing Flows in Changing Tree-based Sensor Networks\",\"authors\":\"Albert Williams, D. Towsley\",\"doi\":\"10.1109/MILCOM52596.2021.9653006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Military sensor networks often operate in resource challenged environments. This poses the problem of how to allocate resources to sensors flow to accomplish a mission. In this paper we consider a set of sensors that communicate observations up a tree to a fusion center. The value of the mission is modeled by a separable increasing concave functions and we develop a low complexity one step algorithm that allocates link capacities to each sensor so as to maximize this function. By limiting ourselves to a tree topology, we derive several important benefits, including the ability to quickly adapt to changes in utility functions or topology, and in a straightforward way to run our algorithm in a parallel, distributed manner over the network with little communication overhead and no centralized planning.\",\"PeriodicalId\":187645,\"journal\":{\"name\":\"MILCOM 2021 - 2021 IEEE Military Communications Conference (MILCOM)\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"MILCOM 2021 - 2021 IEEE Military Communications Conference (MILCOM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MILCOM52596.2021.9653006\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"MILCOM 2021 - 2021 IEEE Military Communications Conference (MILCOM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MILCOM52596.2021.9653006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

军用传感器网络经常在资源匮乏的环境中运行。这就提出了如何将资源分配给传感器流以完成任务的问题。在本文中,我们考虑了一组传感器,它们将观测结果传递到树上的融合中心。任务值由一个可分离的递增凹函数来建模,我们开发了一个低复杂度的一步算法,将链路容量分配给每个传感器,以最大化该函数。通过将自己限制在树形拓扑中,我们获得了几个重要的好处,包括快速适应实用函数或拓扑变化的能力,以及以一种简单的方式在网络上以并行、分布式的方式运行我们的算法,几乎没有通信开销,也没有集中规划。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimizing Flows in Changing Tree-based Sensor Networks
Military sensor networks often operate in resource challenged environments. This poses the problem of how to allocate resources to sensors flow to accomplish a mission. In this paper we consider a set of sensors that communicate observations up a tree to a fusion center. The value of the mission is modeled by a separable increasing concave functions and we develop a low complexity one step algorithm that allocates link capacities to each sensor so as to maximize this function. By limiting ourselves to a tree topology, we derive several important benefits, including the ability to quickly adapt to changes in utility functions or topology, and in a straightforward way to run our algorithm in a parallel, distributed manner over the network with little communication overhead and no centralized planning.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信