利用唾液和呼吸生物标志物信息预测心力衰竭患者事件

E. Tripoliti, G. Karanasiou, F. Kalatzis, Y. Goletsis, A. Bechlioulis, S. Ghimenti, T. Lomonaco, F. Bellagambi, R. Fuoco, M. Marzilli, M. Scali, K. Naka, A. Errachid, D. Fotiadis
{"title":"利用唾液和呼吸生物标志物信息预测心力衰竭患者事件","authors":"E. Tripoliti, G. Karanasiou, F. Kalatzis, Y. Goletsis, A. Bechlioulis, S. Ghimenti, T. Lomonaco, F. Bellagambi, R. Fuoco, M. Marzilli, M. Scali, K. Naka, A. Errachid, D. Fotiadis","doi":"10.1109/BIBE.2017.00-40","DOIUrl":null,"url":null,"abstract":"The aim of this work is to present a machine learning based method for the prediction of adverse events (mortality and relapses) in patients with heart failure (HF) by exploiting, for the first time, measurements of breath and saliva biomarkers (Tumor Necrosis Factor Alpha, Cortisol and Acetone). Data from 27 patients are used in the study and the prediction of adverse events is achieved with high accuracy (77%) using the Rotation Forest algorithm. As in the near future, biomarkers can be measured at home, together with other physiological data, the accurate prediction of adverse events on the basis of home based measurements can revolutionize HF management.","PeriodicalId":262603,"journal":{"name":"2017 IEEE 17th International Conference on Bioinformatics and Bioengineering (BIBE)","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Predicting Heart Failure Patient Events by Exploiting Saliva and Breath Biomarkers Information\",\"authors\":\"E. Tripoliti, G. Karanasiou, F. Kalatzis, Y. Goletsis, A. Bechlioulis, S. Ghimenti, T. Lomonaco, F. Bellagambi, R. Fuoco, M. Marzilli, M. Scali, K. Naka, A. Errachid, D. Fotiadis\",\"doi\":\"10.1109/BIBE.2017.00-40\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The aim of this work is to present a machine learning based method for the prediction of adverse events (mortality and relapses) in patients with heart failure (HF) by exploiting, for the first time, measurements of breath and saliva biomarkers (Tumor Necrosis Factor Alpha, Cortisol and Acetone). Data from 27 patients are used in the study and the prediction of adverse events is achieved with high accuracy (77%) using the Rotation Forest algorithm. As in the near future, biomarkers can be measured at home, together with other physiological data, the accurate prediction of adverse events on the basis of home based measurements can revolutionize HF management.\",\"PeriodicalId\":262603,\"journal\":{\"name\":\"2017 IEEE 17th International Conference on Bioinformatics and Bioengineering (BIBE)\",\"volume\":\"48 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE 17th International Conference on Bioinformatics and Bioengineering (BIBE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BIBE.2017.00-40\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 17th International Conference on Bioinformatics and Bioengineering (BIBE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIBE.2017.00-40","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

这项工作的目的是提出一种基于机器学习的方法,通过首次利用呼吸和唾液生物标志物(肿瘤坏死因子α,皮质醇和丙酮)的测量来预测心力衰竭(HF)患者的不良事件(死亡率和复发)。研究中使用了来自27名患者的数据,使用旋转森林算法对不良事件的预测准确率很高(77%)。在不久的将来,生物标志物可以与其他生理数据一起在家中测量,基于家庭测量的不良事件的准确预测可以彻底改变心衰管理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Predicting Heart Failure Patient Events by Exploiting Saliva and Breath Biomarkers Information
The aim of this work is to present a machine learning based method for the prediction of adverse events (mortality and relapses) in patients with heart failure (HF) by exploiting, for the first time, measurements of breath and saliva biomarkers (Tumor Necrosis Factor Alpha, Cortisol and Acetone). Data from 27 patients are used in the study and the prediction of adverse events is achieved with high accuracy (77%) using the Rotation Forest algorithm. As in the near future, biomarkers can be measured at home, together with other physiological data, the accurate prediction of adverse events on the basis of home based measurements can revolutionize HF management.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信