所有“城市”的规模分布:一个统一的方法

Kristian Giesen, Jens Suedekum
{"title":"所有“城市”的规模分布:一个统一的方法","authors":"Kristian Giesen, Jens Suedekum","doi":"10.2139/ssrn.2004229","DOIUrl":null,"url":null,"abstract":"In this paper we show that the double Pareto lognormal (DPLN)\nparameterization provides an excellent fit to the overall US city size distribution, regardless\nof whether �cities� are administratively defined Census places or economically defined\narea clusters. We then consider an economic model that combines scale-independent urban\ngrowth (Gibrat�s law) with endogenous city creation. City sizes converge to a DPLN\ndistribution in this model, which is much better in line with the data than previous urban\ngrowth frameworks that predict a lognormal or a Pareto city size distribution (Zipf�s law).","PeriodicalId":410291,"journal":{"name":"ERN: Analytical Models (Topic)","volume":"120 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"45","resultStr":"{\"title\":\"The Size Distribution Across All \\\"Cities\\\": A Unifying Approach\",\"authors\":\"Kristian Giesen, Jens Suedekum\",\"doi\":\"10.2139/ssrn.2004229\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we show that the double Pareto lognormal (DPLN)\\nparameterization provides an excellent fit to the overall US city size distribution, regardless\\nof whether �cities� are administratively defined Census places or economically defined\\narea clusters. We then consider an economic model that combines scale-independent urban\\ngrowth (Gibrat�s law) with endogenous city creation. City sizes converge to a DPLN\\ndistribution in this model, which is much better in line with the data than previous urban\\ngrowth frameworks that predict a lognormal or a Pareto city size distribution (Zipf�s law).\",\"PeriodicalId\":410291,\"journal\":{\"name\":\"ERN: Analytical Models (Topic)\",\"volume\":\"120 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-02-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"45\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ERN: Analytical Models (Topic)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.2004229\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Analytical Models (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.2004229","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 45

摘要

在本文中,我们证明了双帕累托对数正态(DPLN)参数化提供了一个很好的拟合整体美国城市规模分布,无论“城市”是行政上定义的人口普查地点还是经济上定义的区域集群。然后,我们考虑了一种将规模无关的城市增长(直布罗陀定律)与内生城市创造相结合的经济模型。在这个模型中,城市规模收敛于dpln分布,这比以前预测对数正态分布或帕累托城市规模分布(Zipf定律)的城市增长框架更符合数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Size Distribution Across All "Cities": A Unifying Approach
In this paper we show that the double Pareto lognormal (DPLN) parameterization provides an excellent fit to the overall US city size distribution, regardless of whether �cities� are administratively defined Census places or economically defined area clusters. We then consider an economic model that combines scale-independent urban growth (Gibrat�s law) with endogenous city creation. City sizes converge to a DPLN distribution in this model, which is much better in line with the data than previous urban growth frameworks that predict a lognormal or a Pareto city size distribution (Zipf�s law).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信