用于加速计算密集型应用的多存储器现场可编程定制计算机

Shrikant S. Jadhav, C. Gloster, Jannatun Naher, C. Doss, Youngsoo Kim
{"title":"用于加速计算密集型应用的多存储器现场可编程定制计算机","authors":"Shrikant S. Jadhav, C. Gloster, Jannatun Naher, C. Doss, Youngsoo Kim","doi":"10.1109/uemcon53757.2021.9666601","DOIUrl":null,"url":null,"abstract":"In this paper, we present an FPGA-based multi-memory controller for accelerating computationally intensive applications. Our architecture accepts multiple inputs and produces multiple outputs for each clock cycle. The architecture includes processor cores with pipelined functional units tailored for each application. Additionally, we present an approach to achieve one to two orders-of-magnitude speedup over a traditional software implementation executing on a conventional multi-core processor. Even though the clock frequency of the Field-Programmable Custom Computing Machine (FCCM) is an order-of-magnitude slower than a conventional multi-core processor, the FCCM is significantly faster. We used the Power function as an application to demonstrate the merits of our FCCM. In our experiments, we executed the Power function in software and compared the software execution times with the execution time of an FCCM. Additionally, we also compared FCCM execution time with the OpenMP implementation of the function. Our experiments show that the results obtained using our multi-memory architecture are 57X faster than software implementation and 17X faster than OpenMP implementation executing the Power function, respectively.","PeriodicalId":127072,"journal":{"name":"2021 IEEE 12th Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON)","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Multi-Memory Field-Programmable Custom Computing Machine for Accelerating Compute-Intensive Applications\",\"authors\":\"Shrikant S. Jadhav, C. Gloster, Jannatun Naher, C. Doss, Youngsoo Kim\",\"doi\":\"10.1109/uemcon53757.2021.9666601\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present an FPGA-based multi-memory controller for accelerating computationally intensive applications. Our architecture accepts multiple inputs and produces multiple outputs for each clock cycle. The architecture includes processor cores with pipelined functional units tailored for each application. Additionally, we present an approach to achieve one to two orders-of-magnitude speedup over a traditional software implementation executing on a conventional multi-core processor. Even though the clock frequency of the Field-Programmable Custom Computing Machine (FCCM) is an order-of-magnitude slower than a conventional multi-core processor, the FCCM is significantly faster. We used the Power function as an application to demonstrate the merits of our FCCM. In our experiments, we executed the Power function in software and compared the software execution times with the execution time of an FCCM. Additionally, we also compared FCCM execution time with the OpenMP implementation of the function. Our experiments show that the results obtained using our multi-memory architecture are 57X faster than software implementation and 17X faster than OpenMP implementation executing the Power function, respectively.\",\"PeriodicalId\":127072,\"journal\":{\"name\":\"2021 IEEE 12th Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON)\",\"volume\":\"43 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE 12th Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/uemcon53757.2021.9666601\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 12th Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/uemcon53757.2021.9666601","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们提出了一种基于fpga的多存储器控制器来加速计算密集型应用。我们的架构接受多个输入,并为每个时钟周期产生多个输出。该架构包括为每个应用量身定制的流水线功能单元的处理器内核。此外,我们提出了一种方法,可以比在传统多核处理器上执行的传统软件实现实现一到两个数量级的加速。尽管现场可编程自定义计算机(FCCM)的时钟频率比传统的多核处理器慢一个数量级,但FCCM的速度要快得多。我们使用Power函数作为一个应用来演示我们的FCCM的优点。在我们的实验中,我们在软件中执行了Power函数,并将软件执行时间与FCCM的执行时间进行了比较。此外,我们还比较了FCCM的执行时间与该函数的OpenMP实现。我们的实验表明,使用我们的多内存架构获得的结果比软件实现快57倍,比OpenMP实现执行Power函数快17倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Multi-Memory Field-Programmable Custom Computing Machine for Accelerating Compute-Intensive Applications
In this paper, we present an FPGA-based multi-memory controller for accelerating computationally intensive applications. Our architecture accepts multiple inputs and produces multiple outputs for each clock cycle. The architecture includes processor cores with pipelined functional units tailored for each application. Additionally, we present an approach to achieve one to two orders-of-magnitude speedup over a traditional software implementation executing on a conventional multi-core processor. Even though the clock frequency of the Field-Programmable Custom Computing Machine (FCCM) is an order-of-magnitude slower than a conventional multi-core processor, the FCCM is significantly faster. We used the Power function as an application to demonstrate the merits of our FCCM. In our experiments, we executed the Power function in software and compared the software execution times with the execution time of an FCCM. Additionally, we also compared FCCM execution time with the OpenMP implementation of the function. Our experiments show that the results obtained using our multi-memory architecture are 57X faster than software implementation and 17X faster than OpenMP implementation executing the Power function, respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信