{"title":"一种基于QLMS算法的自适应消噪器,用于去除EEG记录中的EOG伪影","authors":"E. Mengüç, Nurettin Acır","doi":"10.1109/IDAP.2017.8090246","DOIUrl":null,"url":null,"abstract":"In this paper, a novel adaptive noise canceller (ANC) based on the quaternion valued least mean square algorithm (QLMS) is designed in order to remove electrooculography (EOG) artifacts from electroencephalography (EEG) recordings. The measurement real-valued EOG and EEG signals (FP1, FP2, AF3 and AF4) are first modeled as four-dimensional processes in the quaternion domain. The EOG artifacts are then removed from the EEG signals in the quaternion domain by using the ANC based on QLMS algorithm. The quaternion representation of these signals allows us to remove EOG artifacts from all channels at the same time instead of removing the EOG artifacts in each EEG recordings separately. The simulation results support the proposed approach.","PeriodicalId":111721,"journal":{"name":"2017 International Artificial Intelligence and Data Processing Symposium (IDAP)","volume":"118 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"An adaptive noise canceller based on QLMS algorithm for removing EOG artifacts in EEG recordings\",\"authors\":\"E. Mengüç, Nurettin Acır\",\"doi\":\"10.1109/IDAP.2017.8090246\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a novel adaptive noise canceller (ANC) based on the quaternion valued least mean square algorithm (QLMS) is designed in order to remove electrooculography (EOG) artifacts from electroencephalography (EEG) recordings. The measurement real-valued EOG and EEG signals (FP1, FP2, AF3 and AF4) are first modeled as four-dimensional processes in the quaternion domain. The EOG artifacts are then removed from the EEG signals in the quaternion domain by using the ANC based on QLMS algorithm. The quaternion representation of these signals allows us to remove EOG artifacts from all channels at the same time instead of removing the EOG artifacts in each EEG recordings separately. The simulation results support the proposed approach.\",\"PeriodicalId\":111721,\"journal\":{\"name\":\"2017 International Artificial Intelligence and Data Processing Symposium (IDAP)\",\"volume\":\"118 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 International Artificial Intelligence and Data Processing Symposium (IDAP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IDAP.2017.8090246\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Artificial Intelligence and Data Processing Symposium (IDAP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IDAP.2017.8090246","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An adaptive noise canceller based on QLMS algorithm for removing EOG artifacts in EEG recordings
In this paper, a novel adaptive noise canceller (ANC) based on the quaternion valued least mean square algorithm (QLMS) is designed in order to remove electrooculography (EOG) artifacts from electroencephalography (EEG) recordings. The measurement real-valued EOG and EEG signals (FP1, FP2, AF3 and AF4) are first modeled as four-dimensional processes in the quaternion domain. The EOG artifacts are then removed from the EEG signals in the quaternion domain by using the ANC based on QLMS algorithm. The quaternion representation of these signals allows us to remove EOG artifacts from all channels at the same time instead of removing the EOG artifacts in each EEG recordings separately. The simulation results support the proposed approach.