基于Hadoop的MapReduce宽带嵌入式计算系统

Y. Jung, Richard Neill, L. Carloni
{"title":"基于Hadoop的MapReduce宽带嵌入式计算系统","authors":"Y. Jung, Richard Neill, L. Carloni","doi":"10.1109/CloudCom.2012.6427483","DOIUrl":null,"url":null,"abstract":"An expanding wealth of ubiquitous, heterogeneous, and interconnected embedded devices is behind most of the exponential growth of the “Big Data” phenomenon. Meanwhile, the same embedded devices continue to improve in terms of computational capabilities, thus closing the gap with more traditional computers. Motivated by these trends, we developed a heterogeneous computing system for MapReduce applications that couples cloud computing with distributed embedded computing. Specifically, our system combines a central cluster of Linux servers with a broadband network of embedded set-top box (STB) devices. The MapReduce platform is based on the Hadoop software framework, which we modified and optimized for execution on the STBs. Experimental results confirm that this type of heterogeneous computing system can offer a scalable and energy-efficient platform for the processing of large-scale data-intensive applications.","PeriodicalId":430883,"journal":{"name":"4th IEEE International Conference on Cloud Computing Technology and Science Proceedings","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"A broadband embedded computing system for MapReduce utilizing Hadoop\",\"authors\":\"Y. Jung, Richard Neill, L. Carloni\",\"doi\":\"10.1109/CloudCom.2012.6427483\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An expanding wealth of ubiquitous, heterogeneous, and interconnected embedded devices is behind most of the exponential growth of the “Big Data” phenomenon. Meanwhile, the same embedded devices continue to improve in terms of computational capabilities, thus closing the gap with more traditional computers. Motivated by these trends, we developed a heterogeneous computing system for MapReduce applications that couples cloud computing with distributed embedded computing. Specifically, our system combines a central cluster of Linux servers with a broadband network of embedded set-top box (STB) devices. The MapReduce platform is based on the Hadoop software framework, which we modified and optimized for execution on the STBs. Experimental results confirm that this type of heterogeneous computing system can offer a scalable and energy-efficient platform for the processing of large-scale data-intensive applications.\",\"PeriodicalId\":430883,\"journal\":{\"name\":\"4th IEEE International Conference on Cloud Computing Technology and Science Proceedings\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-12-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"4th IEEE International Conference on Cloud Computing Technology and Science Proceedings\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CloudCom.2012.6427483\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"4th IEEE International Conference on Cloud Computing Technology and Science Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CloudCom.2012.6427483","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

在“大数据”现象呈指数级增长的背后,是无处不在、异构且相互连接的嵌入式设备的财富不断扩大。与此同时,相同的嵌入式设备在计算能力方面不断提高,从而缩小了与更传统的计算机的差距。在这些趋势的推动下,我们为MapReduce应用程序开发了一个异构计算系统,将云计算与分布式嵌入式计算相结合。具体来说,我们的系统将Linux服务器的中央集群与嵌入式机顶盒(STB)设备的宽带网络相结合。MapReduce平台基于Hadoop软件框架,我们对其进行了修改和优化,以便在机顶盒上执行。实验结果证实,这种异构计算系统可以为处理大规模数据密集型应用提供一个可扩展和节能的平台。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A broadband embedded computing system for MapReduce utilizing Hadoop
An expanding wealth of ubiquitous, heterogeneous, and interconnected embedded devices is behind most of the exponential growth of the “Big Data” phenomenon. Meanwhile, the same embedded devices continue to improve in terms of computational capabilities, thus closing the gap with more traditional computers. Motivated by these trends, we developed a heterogeneous computing system for MapReduce applications that couples cloud computing with distributed embedded computing. Specifically, our system combines a central cluster of Linux servers with a broadband network of embedded set-top box (STB) devices. The MapReduce platform is based on the Hadoop software framework, which we modified and optimized for execution on the STBs. Experimental results confirm that this type of heterogeneous computing system can offer a scalable and energy-efficient platform for the processing of large-scale data-intensive applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信