Magnus Harrold, P. Thies, David Newsam, C. B. Ferreira, L. Johanning
{"title":"基于液压缸类比的海上浮式风电非线性系泊系统建模","authors":"Magnus Harrold, P. Thies, David Newsam, C. B. Ferreira, L. Johanning","doi":"10.1115/OMAE2019-96080","DOIUrl":null,"url":null,"abstract":"\n The mooring system for a floating offshore wind turbine is a critical sub-system that ensures the safe station keeping of the platform and has a key influence on hydrodynamic stability. R&D efforts have increasingly explored the benefits of nonlinear mooring systems for this application, as they have the potential to reduce the peak mooring loads and fatigue cycling, ultimately reducing the system cost. This paper reports on a hydraulic based mooring component that possesses these characteristics, attributable mostly to the non-linear deformation of a flexible bladder. This is not a typical hydraulic component and, as a consequence, modeling its dynamic performance is non-trivial. This paper addresses this by introducing an analogy to numerically model the system, in which the functionality of the mooring component is compared to that of a hydraulic cylinder. The development of a working model in Simscape Fluids is outlined, and is subsequently used to simulate the IMS in a realistic environment. It is found that the numerical model captures a number of the dynamic performance characteristics observed in a previously tested prototype of the IMS.","PeriodicalId":306681,"journal":{"name":"Volume 10: Ocean Renewable Energy","volume":"79 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Modeling a Non-Linear Mooring System for Floating Offshore Wind Using a Hydraulic Cylinder Analogy\",\"authors\":\"Magnus Harrold, P. Thies, David Newsam, C. B. Ferreira, L. Johanning\",\"doi\":\"10.1115/OMAE2019-96080\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The mooring system for a floating offshore wind turbine is a critical sub-system that ensures the safe station keeping of the platform and has a key influence on hydrodynamic stability. R&D efforts have increasingly explored the benefits of nonlinear mooring systems for this application, as they have the potential to reduce the peak mooring loads and fatigue cycling, ultimately reducing the system cost. This paper reports on a hydraulic based mooring component that possesses these characteristics, attributable mostly to the non-linear deformation of a flexible bladder. This is not a typical hydraulic component and, as a consequence, modeling its dynamic performance is non-trivial. This paper addresses this by introducing an analogy to numerically model the system, in which the functionality of the mooring component is compared to that of a hydraulic cylinder. The development of a working model in Simscape Fluids is outlined, and is subsequently used to simulate the IMS in a realistic environment. It is found that the numerical model captures a number of the dynamic performance characteristics observed in a previously tested prototype of the IMS.\",\"PeriodicalId\":306681,\"journal\":{\"name\":\"Volume 10: Ocean Renewable Energy\",\"volume\":\"79 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 10: Ocean Renewable Energy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/OMAE2019-96080\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 10: Ocean Renewable Energy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/OMAE2019-96080","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Modeling a Non-Linear Mooring System for Floating Offshore Wind Using a Hydraulic Cylinder Analogy
The mooring system for a floating offshore wind turbine is a critical sub-system that ensures the safe station keeping of the platform and has a key influence on hydrodynamic stability. R&D efforts have increasingly explored the benefits of nonlinear mooring systems for this application, as they have the potential to reduce the peak mooring loads and fatigue cycling, ultimately reducing the system cost. This paper reports on a hydraulic based mooring component that possesses these characteristics, attributable mostly to the non-linear deformation of a flexible bladder. This is not a typical hydraulic component and, as a consequence, modeling its dynamic performance is non-trivial. This paper addresses this by introducing an analogy to numerically model the system, in which the functionality of the mooring component is compared to that of a hydraulic cylinder. The development of a working model in Simscape Fluids is outlined, and is subsequently used to simulate the IMS in a realistic environment. It is found that the numerical model captures a number of the dynamic performance characteristics observed in a previously tested prototype of the IMS.