R. M. Almeida, R. M. Rodrigues, D. M. F. Ribeiro, O. N. Teixeira
{"title":"应用于基准函数的遗传算法在进化过程中的适应度曲线预测","authors":"R. M. Almeida, R. M. Rodrigues, D. M. F. Ribeiro, O. N. Teixeira","doi":"10.5753/erad-no2.2021.18673","DOIUrl":null,"url":null,"abstract":"This work intends to adopt fitness curves prediction from Genetic Algorithms (GAs) proposed in [Almeida et al. 2021], in the context of a more complex function, which is the Schwefel benchmark function. The prediction is performed with the knowledge only of the GA initialization parameters, using the Random Forest model. This approach addresses the main gap in the original work achieving good results, which makes this approach more promising.","PeriodicalId":131298,"journal":{"name":"Anais da I Escola Regional de Alto Desempenho Norte 2 (ERAD-ERAMIA-NO2 2021)","volume":"120 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fitness Value Curves Prediction in the Evolutionary Process of Genetic Algorithms Applied to Benchmark Function\",\"authors\":\"R. M. Almeida, R. M. Rodrigues, D. M. F. Ribeiro, O. N. Teixeira\",\"doi\":\"10.5753/erad-no2.2021.18673\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work intends to adopt fitness curves prediction from Genetic Algorithms (GAs) proposed in [Almeida et al. 2021], in the context of a more complex function, which is the Schwefel benchmark function. The prediction is performed with the knowledge only of the GA initialization parameters, using the Random Forest model. This approach addresses the main gap in the original work achieving good results, which makes this approach more promising.\",\"PeriodicalId\":131298,\"journal\":{\"name\":\"Anais da I Escola Regional de Alto Desempenho Norte 2 (ERAD-ERAMIA-NO2 2021)\",\"volume\":\"120 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Anais da I Escola Regional de Alto Desempenho Norte 2 (ERAD-ERAMIA-NO2 2021)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5753/erad-no2.2021.18673\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anais da I Escola Regional de Alto Desempenho Norte 2 (ERAD-ERAMIA-NO2 2021)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5753/erad-no2.2021.18673","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
本工作打算采用[Almeida et al. 2021]中提出的遗传算法(GAs)的适应度曲线预测,在一个更复杂的函数,即Schwefel基准函数的背景下。使用随机森林模型,仅使用GA初始化参数的知识进行预测。该方法解决了原有工作的主要缺陷,取得了良好的效果,这使得该方法更有前景。
Fitness Value Curves Prediction in the Evolutionary Process of Genetic Algorithms Applied to Benchmark Function
This work intends to adopt fitness curves prediction from Genetic Algorithms (GAs) proposed in [Almeida et al. 2021], in the context of a more complex function, which is the Schwefel benchmark function. The prediction is performed with the knowledge only of the GA initialization parameters, using the Random Forest model. This approach addresses the main gap in the original work achieving good results, which makes this approach more promising.