工程约束优化问题的多目标粒子群优化算法

D. Tan, Wenhai Luo, Qing Liu
{"title":"工程约束优化问题的多目标粒子群优化算法","authors":"D. Tan, Wenhai Luo, Qing Liu","doi":"10.1109/GRC.2009.5255064","DOIUrl":null,"url":null,"abstract":"This paper proposes a modified particle swarm optimization algorithm for engineering optimization problems with constraints, in which the penalty function is employed to the traditional PSO algorithm, and at the same time adjusts the personal optimum and global optimum to make PSO being able to solve the non-linear programming problems, then the multi-objective problem can be converted into single objective problem. Moreover, the constraint term played its role in the process of generating particles, those pariticles which don't meet the constraint condition are eliminated. The actual engineering design optimization problem is tested and the results show that the multi-objective particle swarm optimization algorithm can be used to solve the multi-objective constrained optimization problem. Comparison with Genetic Algorithm confirms that the proposed algorithm can find better solutions, and converge quickly.","PeriodicalId":388774,"journal":{"name":"2009 IEEE International Conference on Granular Computing","volume":"67 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Multi-objective particle swarm optimization algorithm for engineering constrained optimization problems\",\"authors\":\"D. Tan, Wenhai Luo, Qing Liu\",\"doi\":\"10.1109/GRC.2009.5255064\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a modified particle swarm optimization algorithm for engineering optimization problems with constraints, in which the penalty function is employed to the traditional PSO algorithm, and at the same time adjusts the personal optimum and global optimum to make PSO being able to solve the non-linear programming problems, then the multi-objective problem can be converted into single objective problem. Moreover, the constraint term played its role in the process of generating particles, those pariticles which don't meet the constraint condition are eliminated. The actual engineering design optimization problem is tested and the results show that the multi-objective particle swarm optimization algorithm can be used to solve the multi-objective constrained optimization problem. Comparison with Genetic Algorithm confirms that the proposed algorithm can find better solutions, and converge quickly.\",\"PeriodicalId\":388774,\"journal\":{\"name\":\"2009 IEEE International Conference on Granular Computing\",\"volume\":\"67 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IEEE International Conference on Granular Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/GRC.2009.5255064\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE International Conference on Granular Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GRC.2009.5255064","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

提出了一种改进的粒子群优化算法,该算法将惩罚函数引入到传统粒子群优化算法中,同时对个体最优和全局最优进行调整,使粒子群优化算法能够求解非线性规划问题,从而将多目标问题转化为单目标问题。此外,约束项在粒子生成过程中发挥了作用,剔除了不满足约束条件的粒子。对实际工程设计优化问题进行了测试,结果表明,多目标粒子群优化算法可用于解决多目标约束优化问题。与遗传算法的比较表明,该算法能较好地找到解,收敛速度快。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi-objective particle swarm optimization algorithm for engineering constrained optimization problems
This paper proposes a modified particle swarm optimization algorithm for engineering optimization problems with constraints, in which the penalty function is employed to the traditional PSO algorithm, and at the same time adjusts the personal optimum and global optimum to make PSO being able to solve the non-linear programming problems, then the multi-objective problem can be converted into single objective problem. Moreover, the constraint term played its role in the process of generating particles, those pariticles which don't meet the constraint condition are eliminated. The actual engineering design optimization problem is tested and the results show that the multi-objective particle swarm optimization algorithm can be used to solve the multi-objective constrained optimization problem. Comparison with Genetic Algorithm confirms that the proposed algorithm can find better solutions, and converge quickly.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信