模糊逻辑控制器的神经网络整定

D. van Cleave, K. Rattan
{"title":"模糊逻辑控制器的神经网络整定","authors":"D. van Cleave, K. Rattan","doi":"10.1109/NAECON.2000.894925","DOIUrl":null,"url":null,"abstract":"The transformation of expert's knowledge to control rules in a fuzzy logic controller has not been formalized and arbitrary choices concerning, for example, the shape of membership functions have to be made. The quality of a fuzzy controller can be drastically affected by the choice of membership functions. Thus, methods for tuning fuzzy logic controllers are needed. In this paper, neural networks and fuzzy logic are combined to solve the problem of tuning fuzzy logic controllers. The neuro-fuzzy controller uses the neural network learning techniques to tune the membership functions while keeping the semantics of the fuzzy logic controller intact. Both the architecture and the tuning algorithm are presented for a general neuro-fuzzy controller. From this, a procedure to tune a proportional fuzzy controller is obtained. The algorithm for off-line tuning of the fuzzy controller is demonstrated with a numerical example.","PeriodicalId":171131,"journal":{"name":"Proceedings of the IEEE 2000 National Aerospace and Electronics Conference. NAECON 2000. Engineering Tomorrow (Cat. No.00CH37093)","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"Tuning of fuzzy logic controller using neural network\",\"authors\":\"D. van Cleave, K. Rattan\",\"doi\":\"10.1109/NAECON.2000.894925\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The transformation of expert's knowledge to control rules in a fuzzy logic controller has not been formalized and arbitrary choices concerning, for example, the shape of membership functions have to be made. The quality of a fuzzy controller can be drastically affected by the choice of membership functions. Thus, methods for tuning fuzzy logic controllers are needed. In this paper, neural networks and fuzzy logic are combined to solve the problem of tuning fuzzy logic controllers. The neuro-fuzzy controller uses the neural network learning techniques to tune the membership functions while keeping the semantics of the fuzzy logic controller intact. Both the architecture and the tuning algorithm are presented for a general neuro-fuzzy controller. From this, a procedure to tune a proportional fuzzy controller is obtained. The algorithm for off-line tuning of the fuzzy controller is demonstrated with a numerical example.\",\"PeriodicalId\":171131,\"journal\":{\"name\":\"Proceedings of the IEEE 2000 National Aerospace and Electronics Conference. NAECON 2000. Engineering Tomorrow (Cat. No.00CH37093)\",\"volume\":\"54 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the IEEE 2000 National Aerospace and Electronics Conference. NAECON 2000. Engineering Tomorrow (Cat. No.00CH37093)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NAECON.2000.894925\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the IEEE 2000 National Aerospace and Electronics Conference. NAECON 2000. Engineering Tomorrow (Cat. No.00CH37093)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NAECON.2000.894925","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

摘要

在模糊逻辑控制器中,专家知识到控制规则的转换还没有形式化,需要对隶属函数的形状等进行任意选择。隶属函数的选择会极大地影响模糊控制器的质量。因此,需要模糊逻辑控制器的整定方法。本文将神经网络与模糊逻辑相结合来解决模糊控制器的整定问题。神经模糊控制器在保持模糊控制器语义不变的情况下,利用神经网络学习技术来调整隶属函数。给出了一种通用神经模糊控制器的结构和整定算法。在此基础上,给出了比例模糊控制器的整定方法。通过数值算例说明了模糊控制器的离线整定算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Tuning of fuzzy logic controller using neural network
The transformation of expert's knowledge to control rules in a fuzzy logic controller has not been formalized and arbitrary choices concerning, for example, the shape of membership functions have to be made. The quality of a fuzzy controller can be drastically affected by the choice of membership functions. Thus, methods for tuning fuzzy logic controllers are needed. In this paper, neural networks and fuzzy logic are combined to solve the problem of tuning fuzzy logic controllers. The neuro-fuzzy controller uses the neural network learning techniques to tune the membership functions while keeping the semantics of the fuzzy logic controller intact. Both the architecture and the tuning algorithm are presented for a general neuro-fuzzy controller. From this, a procedure to tune a proportional fuzzy controller is obtained. The algorithm for off-line tuning of the fuzzy controller is demonstrated with a numerical example.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信