{"title":"量子计算的基因表达式编程","authors":"G. Álvarez, R. Bennink, S. Irle, J. Jakowski","doi":"10.1145/3617691","DOIUrl":null,"url":null,"abstract":"We introduce QuantumGEP, a scientific computer program that uses gene expression programming (GEP) to find a quantum circuit that either (1) maps a given set of input states to a given set of output states or (2) transforms a fixed initial state to minimize a given physical quantity of the output state. QuantumGEP is a driver program that uses evendim, a generic computational engine for GEP, both of which are free and open source. We apply QuantumGEP as a powerful solver for MaxCut in graphs and for condensed matter quantum many-body Hamiltonians.","PeriodicalId":365166,"journal":{"name":"ACM Transactions on Quantum Computing","volume":"88 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Gene Expression Programming for Quantum Computing\",\"authors\":\"G. Álvarez, R. Bennink, S. Irle, J. Jakowski\",\"doi\":\"10.1145/3617691\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce QuantumGEP, a scientific computer program that uses gene expression programming (GEP) to find a quantum circuit that either (1) maps a given set of input states to a given set of output states or (2) transforms a fixed initial state to minimize a given physical quantity of the output state. QuantumGEP is a driver program that uses evendim, a generic computational engine for GEP, both of which are free and open source. We apply QuantumGEP as a powerful solver for MaxCut in graphs and for condensed matter quantum many-body Hamiltonians.\",\"PeriodicalId\":365166,\"journal\":{\"name\":\"ACM Transactions on Quantum Computing\",\"volume\":\"88 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Quantum Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3617691\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Quantum Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3617691","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We introduce QuantumGEP, a scientific computer program that uses gene expression programming (GEP) to find a quantum circuit that either (1) maps a given set of input states to a given set of output states or (2) transforms a fixed initial state to minimize a given physical quantity of the output state. QuantumGEP is a driver program that uses evendim, a generic computational engine for GEP, both of which are free and open source. We apply QuantumGEP as a powerful solver for MaxCut in graphs and for condensed matter quantum many-body Hamiltonians.