Seung-Jin Yoon, N. Lai, Kyeong-Hwa Kim, Hwachang Song
{"title":"基于全状态观测器的三相并网逆变器离散控制设计","authors":"Seung-Jin Yoon, N. Lai, Kyeong-Hwa Kim, Hwachang Song","doi":"10.1109/PLATCON.2018.8472728","DOIUrl":null,"url":null,"abstract":"LCL filters are being more and more preferred over the L filter in a grid-connected inverter due to the smaller physical size and better harmonic attenuation characteristics. However, additional control loops are often required to control inverter-side current as well as capacitor voltage. These additional control loops complicate the controller design process. To overcome such a limitation, a discrete-time control design for a three-phase grid-connected inverter using a full state observer is presented in this paper. The controller design is accomplished based on the state-space model of the inverter system. Furthermore, to reduce the steady-state error in output currents, a discrete-time integral state feedback controller is employed. Generally, all state variables should be available to implement a state feedback controller. For the purpose of reducing the number of sensors in a practical system, an observer which uses the measured grid-side currents, grid voltages, and control inputs is constructed in discrete-time domain to predict the inverter-side currents and capacitor voltages. As a result of using both the feedback controller and the observer, the proposed control scheme provides a better control performance in a systematic design approach. Simulation results are given to demonstrate the feasibility and performance of the proposed control scheme.","PeriodicalId":231523,"journal":{"name":"2018 International Conference on Platform Technology and Service (PlatCon)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Discrete-Time Control Design for Three-Phase Grid-Connected Inverter Using Full State Observer\",\"authors\":\"Seung-Jin Yoon, N. Lai, Kyeong-Hwa Kim, Hwachang Song\",\"doi\":\"10.1109/PLATCON.2018.8472728\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"LCL filters are being more and more preferred over the L filter in a grid-connected inverter due to the smaller physical size and better harmonic attenuation characteristics. However, additional control loops are often required to control inverter-side current as well as capacitor voltage. These additional control loops complicate the controller design process. To overcome such a limitation, a discrete-time control design for a three-phase grid-connected inverter using a full state observer is presented in this paper. The controller design is accomplished based on the state-space model of the inverter system. Furthermore, to reduce the steady-state error in output currents, a discrete-time integral state feedback controller is employed. Generally, all state variables should be available to implement a state feedback controller. For the purpose of reducing the number of sensors in a practical system, an observer which uses the measured grid-side currents, grid voltages, and control inputs is constructed in discrete-time domain to predict the inverter-side currents and capacitor voltages. As a result of using both the feedback controller and the observer, the proposed control scheme provides a better control performance in a systematic design approach. Simulation results are given to demonstrate the feasibility and performance of the proposed control scheme.\",\"PeriodicalId\":231523,\"journal\":{\"name\":\"2018 International Conference on Platform Technology and Service (PlatCon)\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 International Conference on Platform Technology and Service (PlatCon)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PLATCON.2018.8472728\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference on Platform Technology and Service (PlatCon)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PLATCON.2018.8472728","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Discrete-Time Control Design for Three-Phase Grid-Connected Inverter Using Full State Observer
LCL filters are being more and more preferred over the L filter in a grid-connected inverter due to the smaller physical size and better harmonic attenuation characteristics. However, additional control loops are often required to control inverter-side current as well as capacitor voltage. These additional control loops complicate the controller design process. To overcome such a limitation, a discrete-time control design for a three-phase grid-connected inverter using a full state observer is presented in this paper. The controller design is accomplished based on the state-space model of the inverter system. Furthermore, to reduce the steady-state error in output currents, a discrete-time integral state feedback controller is employed. Generally, all state variables should be available to implement a state feedback controller. For the purpose of reducing the number of sensors in a practical system, an observer which uses the measured grid-side currents, grid voltages, and control inputs is constructed in discrete-time domain to predict the inverter-side currents and capacitor voltages. As a result of using both the feedback controller and the observer, the proposed control scheme provides a better control performance in a systematic design approach. Simulation results are given to demonstrate the feasibility and performance of the proposed control scheme.