结合神经图像特征和文本特征测量日语学术概念网页的初学者友好度

NLP-TEA@ACL Pub Date : 2018-07-01 DOI:10.18653/v1/W18-3721
Hayato Shiokawa, K. Kawaguchi, Bingcai Han, T. Utsuro, Yasuhide Kawada, Masaharu Yoshioka, N. Kando
{"title":"结合神经图像特征和文本特征测量日语学术概念网页的初学者友好度","authors":"Hayato Shiokawa, K. Kawaguchi, Bingcai Han, T. Utsuro, Yasuhide Kawada, Masaharu Yoshioka, N. Kando","doi":"10.18653/v1/W18-3721","DOIUrl":null,"url":null,"abstract":"Search engine is an important tool of modern academic study, but the results are lack of measurement of beginner friendliness. In order to improve the efficiency of using search engine for academic study, it is necessary to invent a technique of measuring the beginner friendliness of a Web page explaining academic concepts and to build an automatic measurement system. This paper studies how to integrate heterogeneous features such as a neural image feature generated from the image of the Web page by a variant of CNN (convolutional neural network) as well as text features extracted from the body text of the HTML file of the Web page. Integration is performed through the framework of the SVM classifier learning. Evaluation results show that heterogeneous features perform better than each individual type of features.","PeriodicalId":321264,"journal":{"name":"NLP-TEA@ACL","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Measuring Beginner Friendliness of Japanese Web Pages explaining Academic Concepts by Integrating Neural Image Feature and Text Features\",\"authors\":\"Hayato Shiokawa, K. Kawaguchi, Bingcai Han, T. Utsuro, Yasuhide Kawada, Masaharu Yoshioka, N. Kando\",\"doi\":\"10.18653/v1/W18-3721\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Search engine is an important tool of modern academic study, but the results are lack of measurement of beginner friendliness. In order to improve the efficiency of using search engine for academic study, it is necessary to invent a technique of measuring the beginner friendliness of a Web page explaining academic concepts and to build an automatic measurement system. This paper studies how to integrate heterogeneous features such as a neural image feature generated from the image of the Web page by a variant of CNN (convolutional neural network) as well as text features extracted from the body text of the HTML file of the Web page. Integration is performed through the framework of the SVM classifier learning. Evaluation results show that heterogeneous features perform better than each individual type of features.\",\"PeriodicalId\":321264,\"journal\":{\"name\":\"NLP-TEA@ACL\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"NLP-TEA@ACL\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18653/v1/W18-3721\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"NLP-TEA@ACL","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/W18-3721","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

搜索引擎是现代学术研究的重要工具,但结果缺乏对初学者友好度的测量。为了提高搜索引擎在学术研究中的使用效率,有必要发明一种测量学术概念网页的初学者友好度的技术,并建立一个自动测量系统。本文研究了如何整合异构特征,如利用CNN(卷积神经网络)的变体从网页图像中生成的神经图像特征,以及从网页HTML文件的正文文本中提取的文本特征。通过SVM分类器学习框架进行积分。评价结果表明,异构特征优于单个类型的特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Measuring Beginner Friendliness of Japanese Web Pages explaining Academic Concepts by Integrating Neural Image Feature and Text Features
Search engine is an important tool of modern academic study, but the results are lack of measurement of beginner friendliness. In order to improve the efficiency of using search engine for academic study, it is necessary to invent a technique of measuring the beginner friendliness of a Web page explaining academic concepts and to build an automatic measurement system. This paper studies how to integrate heterogeneous features such as a neural image feature generated from the image of the Web page by a variant of CNN (convolutional neural network) as well as text features extracted from the body text of the HTML file of the Web page. Integration is performed through the framework of the SVM classifier learning. Evaluation results show that heterogeneous features perform better than each individual type of features.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信