低复杂度物联网传感器的加密强度和机器学习安全性

J. Long, Sam Matsumoto
{"title":"低复杂度物联网传感器的加密强度和机器学习安全性","authors":"J. Long, Sam Matsumoto","doi":"10.1109/INDIN41052.2019.8972053","DOIUrl":null,"url":null,"abstract":"Hacking of every-day sensors is now a common problem with a disproportionate impact over life-critical assets. It is precisely because they are low-cost and low-complexity that these sensors make such easy targets that this problem will grow exponentially as sensors become more indispensable to modern life. This paper examines the impact of sensor hacking and offers a two-phase approach to security: a low-cost authentication scheme and a novel Machine Learning approach using a Malware Predictive Interpreter.","PeriodicalId":260220,"journal":{"name":"2019 IEEE 17th International Conference on Industrial Informatics (INDIN)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cryptographic Strength and Machine Learning Security for Low Complexity IoT Sensors\",\"authors\":\"J. Long, Sam Matsumoto\",\"doi\":\"10.1109/INDIN41052.2019.8972053\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Hacking of every-day sensors is now a common problem with a disproportionate impact over life-critical assets. It is precisely because they are low-cost and low-complexity that these sensors make such easy targets that this problem will grow exponentially as sensors become more indispensable to modern life. This paper examines the impact of sensor hacking and offers a two-phase approach to security: a low-cost authentication scheme and a novel Machine Learning approach using a Malware Predictive Interpreter.\",\"PeriodicalId\":260220,\"journal\":{\"name\":\"2019 IEEE 17th International Conference on Industrial Informatics (INDIN)\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE 17th International Conference on Industrial Informatics (INDIN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INDIN41052.2019.8972053\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 17th International Conference on Industrial Informatics (INDIN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INDIN41052.2019.8972053","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

对日常传感器的黑客攻击现在是一个普遍问题,对生命攸关的资产造成了不成比例的影响。正是因为这些传感器成本低、复杂度低,所以很容易成为攻击目标。随着传感器在现代生活中变得越来越不可或缺,这个问题将呈指数级增长。本文研究了传感器黑客的影响,并提供了一种两阶段的安全方法:一种低成本的身份验证方案和一种使用恶意软件预测解释器的新型机器学习方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cryptographic Strength and Machine Learning Security for Low Complexity IoT Sensors
Hacking of every-day sensors is now a common problem with a disproportionate impact over life-critical assets. It is precisely because they are low-cost and low-complexity that these sensors make such easy targets that this problem will grow exponentially as sensors become more indispensable to modern life. This paper examines the impact of sensor hacking and offers a two-phase approach to security: a low-cost authentication scheme and a novel Machine Learning approach using a Malware Predictive Interpreter.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信