加权LP范数和L2范数优化问题全局最优解的有效求解方法

Langxiong Xie, B. Ling, Zhijing Yang, Qingyun Dai
{"title":"加权LP范数和L2范数优化问题全局最优解的有效求解方法","authors":"Langxiong Xie, B. Ling, Zhijing Yang, Qingyun Dai","doi":"10.1109/ICDSP.2014.6900700","DOIUrl":null,"url":null,"abstract":"This paper extends the existing L1 norm separable surrogate functional (SSF) iterative shrinkage algorithm to approximate the objective function of a weighted Lp norm and L2 norm optimization problem by N one dimensional independent objective functions. However, as the weighted Lp norm and L2 norm optimization problem is nonconvex, there may be more than one locally optimal solution. Hence, it is difficult to find the globally optimal solution. To address this difficulty, this paper further characterizes the regions that the signs of the convexity of the objective function within the regions remain unchanged. Then, the optimal solution within each region and eventually the globally optimal solution of the original optimization problem are found.","PeriodicalId":301856,"journal":{"name":"2014 19th International Conference on Digital Signal Processing","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficient method for solving globally optimal solutions of weighted LP norm and L2 norm optimization problems\",\"authors\":\"Langxiong Xie, B. Ling, Zhijing Yang, Qingyun Dai\",\"doi\":\"10.1109/ICDSP.2014.6900700\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper extends the existing L1 norm separable surrogate functional (SSF) iterative shrinkage algorithm to approximate the objective function of a weighted Lp norm and L2 norm optimization problem by N one dimensional independent objective functions. However, as the weighted Lp norm and L2 norm optimization problem is nonconvex, there may be more than one locally optimal solution. Hence, it is difficult to find the globally optimal solution. To address this difficulty, this paper further characterizes the regions that the signs of the convexity of the objective function within the regions remain unchanged. Then, the optimal solution within each region and eventually the globally optimal solution of the original optimization problem are found.\",\"PeriodicalId\":301856,\"journal\":{\"name\":\"2014 19th International Conference on Digital Signal Processing\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 19th International Conference on Digital Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDSP.2014.6900700\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 19th International Conference on Digital Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDSP.2014.6900700","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文将现有的L1范数可分离代理泛函(SSF)迭代收缩算法扩展到用N个一维独立目标函数逼近加权Lp范数和L2范数优化问题的目标函数。然而,由于加权Lp范数和L2范数优化问题是非凸的,可能存在多个局部最优解。因此,很难找到全局最优解。为了解决这一困难,本文进一步刻画了目标函数的凸性符号在区域内保持不变的区域。然后,求出各区域内的最优解,最终求出原优化问题的全局最优解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Efficient method for solving globally optimal solutions of weighted LP norm and L2 norm optimization problems
This paper extends the existing L1 norm separable surrogate functional (SSF) iterative shrinkage algorithm to approximate the objective function of a weighted Lp norm and L2 norm optimization problem by N one dimensional independent objective functions. However, as the weighted Lp norm and L2 norm optimization problem is nonconvex, there may be more than one locally optimal solution. Hence, it is difficult to find the globally optimal solution. To address this difficulty, this paper further characterizes the regions that the signs of the convexity of the objective function within the regions remain unchanged. Then, the optimal solution within each region and eventually the globally optimal solution of the original optimization problem are found.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信