基于多频带脑网络的并行卷积神经网络脑电分类

Jing Wang, Li Wang
{"title":"基于多频带脑网络的并行卷积神经网络脑电分类","authors":"Jing Wang, Li Wang","doi":"10.1109/aemcse55572.2022.00016","DOIUrl":null,"url":null,"abstract":"To increase the classification accuracy of the mental tasks with speech imagery, a parallel convolutional neural network based on multi-band brain networks (MBBN-PCNN) is proposed. In this model, the hybrid experimental paradigm of motor imagery and speech imagery proposed in our previous studies is used. To acquire richer information in the frequency domain, the electroencephalography (EEG) signals are divided into 3 frequency bands, which are filtered with different frequency ranges for mu(8-12Hz), beta1(13-20Hz), and beta2(21- 30Hz) respectively. By calculating the correlation coefficient and phase- locked value (PLV) of each waveform to construct the brain network, the synchronization and correlation of EEG signals from different channels can be analyzed more effectively. Afterward, to realize the classification of different imagined EEG signals, the generated two-dimensional grayscale maps are fed into our parallel CNN model. The results show that the average classification accuracy of our proposed algorithm is 81.58% for 10 subjects. Compared with brain networks constructed with a single frequency band, multi-band brain networks have higher classification accuracy with the combination of multidimensional features.","PeriodicalId":309096,"journal":{"name":"2022 5th International Conference on Advanced Electronic Materials, Computers and Software Engineering (AEMCSE)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Parallel Convolutional Neural Network Based on Multi-Band Brain Networks for EEG Classification\",\"authors\":\"Jing Wang, Li Wang\",\"doi\":\"10.1109/aemcse55572.2022.00016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To increase the classification accuracy of the mental tasks with speech imagery, a parallel convolutional neural network based on multi-band brain networks (MBBN-PCNN) is proposed. In this model, the hybrid experimental paradigm of motor imagery and speech imagery proposed in our previous studies is used. To acquire richer information in the frequency domain, the electroencephalography (EEG) signals are divided into 3 frequency bands, which are filtered with different frequency ranges for mu(8-12Hz), beta1(13-20Hz), and beta2(21- 30Hz) respectively. By calculating the correlation coefficient and phase- locked value (PLV) of each waveform to construct the brain network, the synchronization and correlation of EEG signals from different channels can be analyzed more effectively. Afterward, to realize the classification of different imagined EEG signals, the generated two-dimensional grayscale maps are fed into our parallel CNN model. The results show that the average classification accuracy of our proposed algorithm is 81.58% for 10 subjects. Compared with brain networks constructed with a single frequency band, multi-band brain networks have higher classification accuracy with the combination of multidimensional features.\",\"PeriodicalId\":309096,\"journal\":{\"name\":\"2022 5th International Conference on Advanced Electronic Materials, Computers and Software Engineering (AEMCSE)\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 5th International Conference on Advanced Electronic Materials, Computers and Software Engineering (AEMCSE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/aemcse55572.2022.00016\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 5th International Conference on Advanced Electronic Materials, Computers and Software Engineering (AEMCSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/aemcse55572.2022.00016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

为了提高语音图像心理任务的分类准确率,提出了一种基于多频带脑网络的并行卷积神经网络(MBBN-PCNN)。在这个模型中,我们使用了我们之前的研究中提出的运动意象和言语意象的混合实验范式。为了获得更丰富的频域信息,将脑电图信号划分为3个频段,分别对mu(8-12Hz)、beta1(13-20Hz)和beta2(21- 30Hz)进行不同频率范围的滤波。通过计算各波形的相关系数和锁相值(PLV)来构建脑网络,可以更有效地分析不同通道脑电信号的同步和相关性。然后,将生成的二维灰度图输入到我们的并行CNN模型中,实现对不同想象脑电信号的分类。结果表明,对于10个主题,本文算法的平均分类准确率为81.58%。与单频段构建的脑网络相比,多频段脑网络结合了多维特征,具有更高的分类准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Parallel Convolutional Neural Network Based on Multi-Band Brain Networks for EEG Classification
To increase the classification accuracy of the mental tasks with speech imagery, a parallel convolutional neural network based on multi-band brain networks (MBBN-PCNN) is proposed. In this model, the hybrid experimental paradigm of motor imagery and speech imagery proposed in our previous studies is used. To acquire richer information in the frequency domain, the electroencephalography (EEG) signals are divided into 3 frequency bands, which are filtered with different frequency ranges for mu(8-12Hz), beta1(13-20Hz), and beta2(21- 30Hz) respectively. By calculating the correlation coefficient and phase- locked value (PLV) of each waveform to construct the brain network, the synchronization and correlation of EEG signals from different channels can be analyzed more effectively. Afterward, to realize the classification of different imagined EEG signals, the generated two-dimensional grayscale maps are fed into our parallel CNN model. The results show that the average classification accuracy of our proposed algorithm is 81.58% for 10 subjects. Compared with brain networks constructed with a single frequency band, multi-band brain networks have higher classification accuracy with the combination of multidimensional features.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信