直流电动机位置的模型预测控制与遗传PID算法。

Eduardo Flores-Morán, Wendy Yánez-Pazmiño, Luis Espín-Pazmiño, Ivette Carrera-Manosalvas, Julio Barzola-Monteses
{"title":"直流电动机位置的模型预测控制与遗传PID算法。","authors":"Eduardo Flores-Morán, Wendy Yánez-Pazmiño, Luis Espín-Pazmiño, Ivette Carrera-Manosalvas, Julio Barzola-Monteses","doi":"10.1109/concapan48024.2022.9997608","DOIUrl":null,"url":null,"abstract":"Direct current (DC) drivers have been widely implemented in a variety of systems due to their simple and affordable configuration and capability for variable speed control. DC drivers position control are modeled as third order systems, which demand considerable effort in terms of control action. More recent attention has focused on the development of controllers based on artificial intelligence. However, the computational resource is significant. To determine the effectiveness of a specific controller, it is necessary to examine the parameters of rising time (tr), settling time (ts), overshoot percentage (Mp%) and steady state error (ESS). Thus, the main contribution in this paper is to provide a comprehensive study of two strategies, Model Predictive Control (MPC) and Genetic Algorithm (GA). MPC applies a set of rules to the model in order to forecast the upcoming behavior of a system across a defined horizon. The latter is a solver that imitates the natural evolution of Darwin’s law to tune PID controller. MPC provides a suitable response in terms of toque load disturbance and overshoot percentage.","PeriodicalId":138415,"journal":{"name":"2022 IEEE 40th Central America and Panama Convention (CONCAPAN)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Model Predictive Control and Genetic Algorithm PID for DC Motor position.\",\"authors\":\"Eduardo Flores-Morán, Wendy Yánez-Pazmiño, Luis Espín-Pazmiño, Ivette Carrera-Manosalvas, Julio Barzola-Monteses\",\"doi\":\"10.1109/concapan48024.2022.9997608\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Direct current (DC) drivers have been widely implemented in a variety of systems due to their simple and affordable configuration and capability for variable speed control. DC drivers position control are modeled as third order systems, which demand considerable effort in terms of control action. More recent attention has focused on the development of controllers based on artificial intelligence. However, the computational resource is significant. To determine the effectiveness of a specific controller, it is necessary to examine the parameters of rising time (tr), settling time (ts), overshoot percentage (Mp%) and steady state error (ESS). Thus, the main contribution in this paper is to provide a comprehensive study of two strategies, Model Predictive Control (MPC) and Genetic Algorithm (GA). MPC applies a set of rules to the model in order to forecast the upcoming behavior of a system across a defined horizon. The latter is a solver that imitates the natural evolution of Darwin’s law to tune PID controller. MPC provides a suitable response in terms of toque load disturbance and overshoot percentage.\",\"PeriodicalId\":138415,\"journal\":{\"name\":\"2022 IEEE 40th Central America and Panama Convention (CONCAPAN)\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE 40th Central America and Panama Convention (CONCAPAN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/concapan48024.2022.9997608\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 40th Central America and Panama Convention (CONCAPAN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/concapan48024.2022.9997608","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

直流(DC)驱动器由于其简单,经济实惠的配置和变速控制能力,已广泛应用于各种系统中。直流驱动器位置控制建模为三阶系统,在控制动作方面需要付出相当大的努力。最近更多的注意力集中在基于人工智能的控制器的开发上。然而,计算资源是重要的。为了确定特定控制器的有效性,有必要检查上升时间(tr),稳定时间(ts),超调百分比(Mp%)和稳态误差(ESS)等参数。因此,本文的主要贡献是对模型预测控制(MPC)和遗传算法(GA)两种策略进行了全面的研究。MPC将一组规则应用到模型中,以便在定义的范围内预测系统即将发生的行为。后者是一种模仿自然进化的达尔文定律来调整PID控制器的求解器。MPC在转矩、负载扰动和超调率方面提供了合适的响应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Model Predictive Control and Genetic Algorithm PID for DC Motor position.
Direct current (DC) drivers have been widely implemented in a variety of systems due to their simple and affordable configuration and capability for variable speed control. DC drivers position control are modeled as third order systems, which demand considerable effort in terms of control action. More recent attention has focused on the development of controllers based on artificial intelligence. However, the computational resource is significant. To determine the effectiveness of a specific controller, it is necessary to examine the parameters of rising time (tr), settling time (ts), overshoot percentage (Mp%) and steady state error (ESS). Thus, the main contribution in this paper is to provide a comprehensive study of two strategies, Model Predictive Control (MPC) and Genetic Algorithm (GA). MPC applies a set of rules to the model in order to forecast the upcoming behavior of a system across a defined horizon. The latter is a solver that imitates the natural evolution of Darwin’s law to tune PID controller. MPC provides a suitable response in terms of toque load disturbance and overshoot percentage.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信