{"title":"平面曲线拓扑结构的计算","authors":"D. Diatta, F. Rouillier, Marie-Françoise Roy","doi":"10.1145/2608628.2608670","DOIUrl":null,"url":null,"abstract":"Let <i>P</i> ∈ Z[<i>X, Y</i>] be a square-free polynomial and C(<i>P</i>):= {(α, β) ∈ R<sup>2</sup>, <i>P</i>(α, β) = 0} be the real algebraic curve defined by <i>P</i>. Our main result is an algorithm for the computation of the local topology in a neighbourhood of each of the singular points and critical points of the projection wrt the <i>X</i>-axis in <i>Õ</i>(<i>d</i><sup>6</sup>τ+<i>d</i><sup>7</sup>) bit operations where <i>Õ</i> means that we ignore logarithmic factors in <i>d</i> and <i>τ</i>. Compared to state of the art sub-algorithms used for computing a Cylindrical Algebraic Decomposition, this result avoids a generic shear and gives a deterministic algorithm for the computation of the topology of C(<i>P</i>) <i>i.e</i> a straight-line planar graph isotopic to C(<i>P</i>) in <i>Õ</i>(<i>d</i><sup>6</sup><i>τ</i> + <i>d</i><sup>7</sup>) bit operations.","PeriodicalId":243282,"journal":{"name":"International Symposium on Symbolic and Algebraic Computation","volume":"237 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"On the computation of the topology of plane curves\",\"authors\":\"D. Diatta, F. Rouillier, Marie-Françoise Roy\",\"doi\":\"10.1145/2608628.2608670\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let <i>P</i> ∈ Z[<i>X, Y</i>] be a square-free polynomial and C(<i>P</i>):= {(α, β) ∈ R<sup>2</sup>, <i>P</i>(α, β) = 0} be the real algebraic curve defined by <i>P</i>. Our main result is an algorithm for the computation of the local topology in a neighbourhood of each of the singular points and critical points of the projection wrt the <i>X</i>-axis in <i>Õ</i>(<i>d</i><sup>6</sup>τ+<i>d</i><sup>7</sup>) bit operations where <i>Õ</i> means that we ignore logarithmic factors in <i>d</i> and <i>τ</i>. Compared to state of the art sub-algorithms used for computing a Cylindrical Algebraic Decomposition, this result avoids a generic shear and gives a deterministic algorithm for the computation of the topology of C(<i>P</i>) <i>i.e</i> a straight-line planar graph isotopic to C(<i>P</i>) in <i>Õ</i>(<i>d</i><sup>6</sup><i>τ</i> + <i>d</i><sup>7</sup>) bit operations.\",\"PeriodicalId\":243282,\"journal\":{\"name\":\"International Symposium on Symbolic and Algebraic Computation\",\"volume\":\"237 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Symposium on Symbolic and Algebraic Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2608628.2608670\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Symposium on Symbolic and Algebraic Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2608628.2608670","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
On the computation of the topology of plane curves
Let P ∈ Z[X, Y] be a square-free polynomial and C(P):= {(α, β) ∈ R2, P(α, β) = 0} be the real algebraic curve defined by P. Our main result is an algorithm for the computation of the local topology in a neighbourhood of each of the singular points and critical points of the projection wrt the X-axis in Õ(d6τ+d7) bit operations where Õ means that we ignore logarithmic factors in d and τ. Compared to state of the art sub-algorithms used for computing a Cylindrical Algebraic Decomposition, this result avoids a generic shear and gives a deterministic algorithm for the computation of the topology of C(P) i.e a straight-line planar graph isotopic to C(P) in Õ(d6τ + d7) bit operations.