连续空间的亚像素视差估计

Li-De Chen, Jo-Jiun Yu, Wei-Han Cheng, Chao-Tsung Huang
{"title":"连续空间的亚像素视差估计","authors":"Li-De Chen, Jo-Jiun Yu, Wei-Han Cheng, Chao-Tsung Huang","doi":"10.1109/ICCE-TW.2015.7216807","DOIUrl":null,"url":null,"abstract":"For depth-from-stereo vision applications such as driving assistance and object-size estimation, the accuracy of disparity estimation determines the precision of depth measurement. Conventional dense methods are hard to estimate disparity within a 0.1 pixel precision. In this paper, we present a novel object-based method to achieve robust and deep sub-pixel accurate disparity estimation. In our experimental system, it can provide depth measurement with less than 5% relative error within 150 m.","PeriodicalId":340402,"journal":{"name":"2015 IEEE International Conference on Consumer Electronics - Taiwan","volume":"120 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sub-pixel disparity estimation in continuous space\",\"authors\":\"Li-De Chen, Jo-Jiun Yu, Wei-Han Cheng, Chao-Tsung Huang\",\"doi\":\"10.1109/ICCE-TW.2015.7216807\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For depth-from-stereo vision applications such as driving assistance and object-size estimation, the accuracy of disparity estimation determines the precision of depth measurement. Conventional dense methods are hard to estimate disparity within a 0.1 pixel precision. In this paper, we present a novel object-based method to achieve robust and deep sub-pixel accurate disparity estimation. In our experimental system, it can provide depth measurement with less than 5% relative error within 150 m.\",\"PeriodicalId\":340402,\"journal\":{\"name\":\"2015 IEEE International Conference on Consumer Electronics - Taiwan\",\"volume\":\"120 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE International Conference on Consumer Electronics - Taiwan\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCE-TW.2015.7216807\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Consumer Electronics - Taiwan","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCE-TW.2015.7216807","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

对于驾驶辅助和物体尺寸估计等立体视觉深度应用,视差估计的精度决定了深度测量的精度。传统的密集方法很难在0.1像素精度内估计视差。本文提出了一种新的基于目标的深度亚像素精度视差估计方法。在我们的实验系统中,它可以在150 m范围内提供相对误差小于5%的深度测量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sub-pixel disparity estimation in continuous space
For depth-from-stereo vision applications such as driving assistance and object-size estimation, the accuracy of disparity estimation determines the precision of depth measurement. Conventional dense methods are hard to estimate disparity within a 0.1 pixel precision. In this paper, we present a novel object-based method to achieve robust and deep sub-pixel accurate disparity estimation. In our experimental system, it can provide depth measurement with less than 5% relative error within 150 m.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信