生成代数映射类群的zieschang - mcool方法

Lluís Bacardit, Warren Dicks
{"title":"生成代数映射类群的zieschang - mcool方法","authors":"Lluís Bacardit, Warren Dicks","doi":"10.1515/GCC.2011.007","DOIUrl":null,"url":null,"abstract":"Abstract Let g, p ∈ [0↑∞[, the set of non-negative integers. Let A g,p denote the group consisting of all those automorphisms of the free group on t [1↑p] ∪ x [1↑g] ∪ y [1↑g] which fix the element ∏ j∈[p↓1] tj ∏ i∈[1↑g][xi, yi ] and permute the set of conjugacy classes {[tj ] : j ∈ [1↑p]}. Labruère and Paris, building on work of Artin, Magnus, Dehn, Nielsen, Lickorish, Zieschang, Birman, Humphries, and others, showed that A g,p is generated by what is called the ADLH set. We use methods of Zieschang and McCool to give a self-contained, algebraic proof of this result. (Labruère and Paris also gave defining relations for the ADLH set in A g,p ; we do not know an algebraic proof of this for g ⩾ 2.) Consider an orientable surface S g,p of genus g with p punctures, with (g, p) ≠ (0, 0), (0, 1). The algebraic mapping-class group of S g,p , denoted , is defined as the group of all those outer automorphisms of 〈t [1↑p] ∪ x [1↑g] ∪ y [1↑g] | ∏ j∈[p↓1] tj ∏ i∈[1↑g][xi, yi ]〉 which permute the set of conjugacy classes . It now follows from a result of Nielsen that is generated by the image of the ADLH set together with a reflection. This gives a new way of seeing that equals the (topological) mapping-class group of S g,p , along lines suggested by Magnus, Karrass, and Solitar in 1966.","PeriodicalId":119576,"journal":{"name":"Groups Complex. Cryptol.","volume":"63 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The Zieschang–McCool method for generating algebraic mapping-class groups\",\"authors\":\"Lluís Bacardit, Warren Dicks\",\"doi\":\"10.1515/GCC.2011.007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Let g, p ∈ [0↑∞[, the set of non-negative integers. Let A g,p denote the group consisting of all those automorphisms of the free group on t [1↑p] ∪ x [1↑g] ∪ y [1↑g] which fix the element ∏ j∈[p↓1] tj ∏ i∈[1↑g][xi, yi ] and permute the set of conjugacy classes {[tj ] : j ∈ [1↑p]}. Labruère and Paris, building on work of Artin, Magnus, Dehn, Nielsen, Lickorish, Zieschang, Birman, Humphries, and others, showed that A g,p is generated by what is called the ADLH set. We use methods of Zieschang and McCool to give a self-contained, algebraic proof of this result. (Labruère and Paris also gave defining relations for the ADLH set in A g,p ; we do not know an algebraic proof of this for g ⩾ 2.) Consider an orientable surface S g,p of genus g with p punctures, with (g, p) ≠ (0, 0), (0, 1). The algebraic mapping-class group of S g,p , denoted , is defined as the group of all those outer automorphisms of 〈t [1↑p] ∪ x [1↑g] ∪ y [1↑g] | ∏ j∈[p↓1] tj ∏ i∈[1↑g][xi, yi ]〉 which permute the set of conjugacy classes . It now follows from a result of Nielsen that is generated by the image of the ADLH set together with a reflection. This gives a new way of seeing that equals the (topological) mapping-class group of S g,p , along lines suggested by Magnus, Karrass, and Solitar in 1966.\",\"PeriodicalId\":119576,\"journal\":{\"name\":\"Groups Complex. Cryptol.\",\"volume\":\"63 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-04-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Groups Complex. Cryptol.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/GCC.2011.007\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Groups Complex. Cryptol.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/GCC.2011.007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

设g, p∈[0↑∞],非负整数集。设A g,p表示由t[1↑p]∪x[1↑g]∪y[1↑g]上的所有自同构组成的群,这些自同构固定了元素∏j∈[p↓1]tj∏i∈[1↑g][xi, yi]并置换了共轭类集{[tj]: j∈[1↑p]}。labrure和Paris在Artin、Magnus、Dehn、Nielsen、Lickorish、Zieschang、Birman、Humphries等人的基础上,证明了aa,p是由所谓的ADLH集产生的。我们利用Zieschang和McCool的方法给出了这个结果的一个自包含的代数证明。(labrure和Paris也给出了ADLH的定义关系;我们不知道g大于或等于2的代数证明)考虑一个可定向曲面S g,p属g,p有p个点,且(g, p)≠(0,0),(0,1)。S g,p的代数映射类群,记为< t[1↑p]∪x[1↑g]∪y[1↑g] |∏j∈[p↓1]tj∏i∈[1↑g][xi, yi] >的所有外自同构的群,它们置换了共轭类集合。这是尼尔森的结果,它是由ADLH的图像与反射集在一起产生的。这给出了一种新的方式来看待它等于S g,p的(拓扑)映射类群,沿着Magnus, Karrass和Solitar在1966年提出的路线。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Zieschang–McCool method for generating algebraic mapping-class groups
Abstract Let g, p ∈ [0↑∞[, the set of non-negative integers. Let A g,p denote the group consisting of all those automorphisms of the free group on t [1↑p] ∪ x [1↑g] ∪ y [1↑g] which fix the element ∏ j∈[p↓1] tj ∏ i∈[1↑g][xi, yi ] and permute the set of conjugacy classes {[tj ] : j ∈ [1↑p]}. Labruère and Paris, building on work of Artin, Magnus, Dehn, Nielsen, Lickorish, Zieschang, Birman, Humphries, and others, showed that A g,p is generated by what is called the ADLH set. We use methods of Zieschang and McCool to give a self-contained, algebraic proof of this result. (Labruère and Paris also gave defining relations for the ADLH set in A g,p ; we do not know an algebraic proof of this for g ⩾ 2.) Consider an orientable surface S g,p of genus g with p punctures, with (g, p) ≠ (0, 0), (0, 1). The algebraic mapping-class group of S g,p , denoted , is defined as the group of all those outer automorphisms of 〈t [1↑p] ∪ x [1↑g] ∪ y [1↑g] | ∏ j∈[p↓1] tj ∏ i∈[1↑g][xi, yi ]〉 which permute the set of conjugacy classes . It now follows from a result of Nielsen that is generated by the image of the ADLH set together with a reflection. This gives a new way of seeing that equals the (topological) mapping-class group of S g,p , along lines suggested by Magnus, Karrass, and Solitar in 1966.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信