VLSI神经网络的器件失配补偿方法

E. Neftci, G. Indiveri
{"title":"VLSI神经网络的器件失配补偿方法","authors":"E. Neftci, G. Indiveri","doi":"10.1109/BIOCAS.2010.5709621","DOIUrl":null,"url":null,"abstract":"Device mismatch in neuromorphic VLSI implementations of spiking neural networks can be a serious and limiting problem. Classical engineering solutions can reduce the effect of mismatch, but require increasing layout sizes or using additional precious silicon real-estate. Here we propose a complementary strategy which exploits the Address-Event Representation used in neuromorphic systems and does not affect the device layout. We propose a method that selectively changes the connectivity profile in the neural network to normalize its response. We provide a theoretical analysis of the approach proposed and demonstrate its effectiveness with experimental data obtained from a VLSI Soft Winner-Take-All network.","PeriodicalId":440499,"journal":{"name":"2010 Biomedical Circuits and Systems Conference (BioCAS)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"40","resultStr":"{\"title\":\"A device mismatch compensation method for VLSI neural networks\",\"authors\":\"E. Neftci, G. Indiveri\",\"doi\":\"10.1109/BIOCAS.2010.5709621\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Device mismatch in neuromorphic VLSI implementations of spiking neural networks can be a serious and limiting problem. Classical engineering solutions can reduce the effect of mismatch, but require increasing layout sizes or using additional precious silicon real-estate. Here we propose a complementary strategy which exploits the Address-Event Representation used in neuromorphic systems and does not affect the device layout. We propose a method that selectively changes the connectivity profile in the neural network to normalize its response. We provide a theoretical analysis of the approach proposed and demonstrate its effectiveness with experimental data obtained from a VLSI Soft Winner-Take-All network.\",\"PeriodicalId\":440499,\"journal\":{\"name\":\"2010 Biomedical Circuits and Systems Conference (BioCAS)\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-06-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"40\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 Biomedical Circuits and Systems Conference (BioCAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BIOCAS.2010.5709621\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Biomedical Circuits and Systems Conference (BioCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIOCAS.2010.5709621","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 40

摘要

在脉冲神经网络的神经形态VLSI实现中,器件失配是一个严重的限制问题。经典的工程解决方案可以减少不匹配的影响,但需要增加布局尺寸或使用额外的宝贵硅空间。在这里,我们提出了一种补充策略,该策略利用了神经形态系统中使用的地址-事件表示,并且不影响设备布局。我们提出了一种方法,选择性地改变神经网络的连接特征,使其响应归一化。我们对所提出的方法进行了理论分析,并通过超大规模集成电路软赢家通吃网络的实验数据证明了其有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A device mismatch compensation method for VLSI neural networks
Device mismatch in neuromorphic VLSI implementations of spiking neural networks can be a serious and limiting problem. Classical engineering solutions can reduce the effect of mismatch, but require increasing layout sizes or using additional precious silicon real-estate. Here we propose a complementary strategy which exploits the Address-Event Representation used in neuromorphic systems and does not affect the device layout. We propose a method that selectively changes the connectivity profile in the neural network to normalize its response. We provide a theoretical analysis of the approach proposed and demonstrate its effectiveness with experimental data obtained from a VLSI Soft Winner-Take-All network.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信