改进基于深度的目标提取方法

F. Prada, Leandro Cruz, L. Velho
{"title":"改进基于深度的目标提取方法","authors":"F. Prada, Leandro Cruz, L. Velho","doi":"10.1109/CLEI.2013.6670637","DOIUrl":null,"url":null,"abstract":"In this work, we introduce a method to do object extraction in RGBD images. Our method consists in a depth-based approach which provides an insight into connectedness, proximity and planarity of the scene. We combine the depth and the color in a GraphCut framework to achieve robustness. Specifically, we propose a depth-based seeding which reduces the uncertainty and limitations of the traditional color based seeding. The results of our depth-based seeding were satisfactory and allowed good segmentation results at indoor environments. An extension of our method to do video segmentation using contour graphs is also discussed.","PeriodicalId":184399,"journal":{"name":"2013 XXXIX Latin American Computing Conference (CLEI)","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Improving object extraction with depth-based methods\",\"authors\":\"F. Prada, Leandro Cruz, L. Velho\",\"doi\":\"10.1109/CLEI.2013.6670637\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we introduce a method to do object extraction in RGBD images. Our method consists in a depth-based approach which provides an insight into connectedness, proximity and planarity of the scene. We combine the depth and the color in a GraphCut framework to achieve robustness. Specifically, we propose a depth-based seeding which reduces the uncertainty and limitations of the traditional color based seeding. The results of our depth-based seeding were satisfactory and allowed good segmentation results at indoor environments. An extension of our method to do video segmentation using contour graphs is also discussed.\",\"PeriodicalId\":184399,\"journal\":{\"name\":\"2013 XXXIX Latin American Computing Conference (CLEI)\",\"volume\":\"45 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-11-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 XXXIX Latin American Computing Conference (CLEI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CLEI.2013.6670637\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 XXXIX Latin American Computing Conference (CLEI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CLEI.2013.6670637","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文介绍了一种在RGBD图像中进行目标提取的方法。我们的方法包括基于深度的方法,该方法提供了对场景的连通性、接近性和平面性的洞察。我们在GraphCut框架中结合深度和颜色来实现鲁棒性。具体来说,我们提出了一种基于深度的播种方法,减少了传统基于颜色播种方法的不确定性和局限性。我们基于深度的播种结果令人满意,并且在室内环境下可以获得良好的分割结果。本文还讨论了利用等高线图进行视频分割的一种扩展方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improving object extraction with depth-based methods
In this work, we introduce a method to do object extraction in RGBD images. Our method consists in a depth-based approach which provides an insight into connectedness, proximity and planarity of the scene. We combine the depth and the color in a GraphCut framework to achieve robustness. Specifically, we propose a depth-based seeding which reduces the uncertainty and limitations of the traditional color based seeding. The results of our depth-based seeding were satisfactory and allowed good segmentation results at indoor environments. An extension of our method to do video segmentation using contour graphs is also discussed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信