{"title":"距离引导下集合中最佳基分类器的选择及其在图像分割中的应用","authors":"Wei Wang, Xiaolei Huang","doi":"10.1109/CVPRW.2009.5204048","DOIUrl":null,"url":null,"abstract":"We empirically evaluate a distance-guided learning method embedded in a multiple classifier system (MCS) for tissue segmentation in optical images of the uterine cervix. Instead of combining multiple base classifiers as in traditional ensemble methods, we propose a Bhattacharyya distance based metric for measuring the similarity in decision boundary shapes between a pair of statistical classifiers. By generating an ensemble of base classifiers trained independently on separate training images, we can use the distance metric to select those classifiers in the ensemble whose decision boundaries are similar to that of an unknown test image. In an extreme case, we select the base classifier with the most similar decision boundary to accomplish classification and segmentation on the test image. Our approach is novel in the way that the nearest neighbor is picked and effectively solves classification problems in which base classifiers with good overall performance are not easy to construct due to a large variation in the training examples. In our experiments, we applied our method and several popular ensemble methods to segmenting acetowhite regions in cervical images. The overall classification accuracy of the proposed method is significantly better than that of a single classifier learned using the entire training set, and is also superior to other ensemble methods including majority voting, STAPLE, Boosting and Bagging.","PeriodicalId":431981,"journal":{"name":"2009 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Distance guided selection of the best base classifier in an ensemble with application to cervigram image segmentation\",\"authors\":\"Wei Wang, Xiaolei Huang\",\"doi\":\"10.1109/CVPRW.2009.5204048\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We empirically evaluate a distance-guided learning method embedded in a multiple classifier system (MCS) for tissue segmentation in optical images of the uterine cervix. Instead of combining multiple base classifiers as in traditional ensemble methods, we propose a Bhattacharyya distance based metric for measuring the similarity in decision boundary shapes between a pair of statistical classifiers. By generating an ensemble of base classifiers trained independently on separate training images, we can use the distance metric to select those classifiers in the ensemble whose decision boundaries are similar to that of an unknown test image. In an extreme case, we select the base classifier with the most similar decision boundary to accomplish classification and segmentation on the test image. Our approach is novel in the way that the nearest neighbor is picked and effectively solves classification problems in which base classifiers with good overall performance are not easy to construct due to a large variation in the training examples. In our experiments, we applied our method and several popular ensemble methods to segmenting acetowhite regions in cervical images. The overall classification accuracy of the proposed method is significantly better than that of a single classifier learned using the entire training set, and is also superior to other ensemble methods including majority voting, STAPLE, Boosting and Bagging.\",\"PeriodicalId\":431981,\"journal\":{\"name\":\"2009 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPRW.2009.5204048\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPRW.2009.5204048","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Distance guided selection of the best base classifier in an ensemble with application to cervigram image segmentation
We empirically evaluate a distance-guided learning method embedded in a multiple classifier system (MCS) for tissue segmentation in optical images of the uterine cervix. Instead of combining multiple base classifiers as in traditional ensemble methods, we propose a Bhattacharyya distance based metric for measuring the similarity in decision boundary shapes between a pair of statistical classifiers. By generating an ensemble of base classifiers trained independently on separate training images, we can use the distance metric to select those classifiers in the ensemble whose decision boundaries are similar to that of an unknown test image. In an extreme case, we select the base classifier with the most similar decision boundary to accomplish classification and segmentation on the test image. Our approach is novel in the way that the nearest neighbor is picked and effectively solves classification problems in which base classifiers with good overall performance are not easy to construct due to a large variation in the training examples. In our experiments, we applied our method and several popular ensemble methods to segmenting acetowhite regions in cervical images. The overall classification accuracy of the proposed method is significantly better than that of a single classifier learned using the entire training set, and is also superior to other ensemble methods including majority voting, STAPLE, Boosting and Bagging.