基于条件随机场的判别多任务稀疏学习鲁棒视觉跟踪

B. Bozorgtabar, Roland Göcke
{"title":"基于条件随机场的判别多任务稀疏学习鲁棒视觉跟踪","authors":"B. Bozorgtabar, Roland Göcke","doi":"10.1109/DICTA.2014.7008102","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a discriminative multitask sparse learning scheme for object tracking in a particle filter framework. By representing each particle as a linear combination of adaptive dictionary templates, we utilise the correlations among different particles (tasks) to obtain a better representation and a more efficient scheme than learning each task individually. However, this model is completely generative and the designed tracker may not be robust enough to prevent the drifting problem in the presence of rapid appearance changes. In this paper, we use a Conditional Random Field (CRF) along with the multitask sparse model to extend our scheme to distinguish the object candidate from the background particle candidate. By this way, the number of particle samples is reduced significantly, while we make the tracker more robust. The proposed algorithm is evaluated on 11 challenging sequences and the results confirm the effectiveness of the approach and significantly outperforms the state-of-the-art trackers in terms of accuracy measures including the centre location error and the overlap ratio, respectively.","PeriodicalId":146695,"journal":{"name":"2014 International Conference on Digital Image Computing: Techniques and Applications (DICTA)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Discriminative Multi-Task Sparse Learning for Robust Visual Tracking Using Conditional Random Field\",\"authors\":\"B. Bozorgtabar, Roland Göcke\",\"doi\":\"10.1109/DICTA.2014.7008102\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a discriminative multitask sparse learning scheme for object tracking in a particle filter framework. By representing each particle as a linear combination of adaptive dictionary templates, we utilise the correlations among different particles (tasks) to obtain a better representation and a more efficient scheme than learning each task individually. However, this model is completely generative and the designed tracker may not be robust enough to prevent the drifting problem in the presence of rapid appearance changes. In this paper, we use a Conditional Random Field (CRF) along with the multitask sparse model to extend our scheme to distinguish the object candidate from the background particle candidate. By this way, the number of particle samples is reduced significantly, while we make the tracker more robust. The proposed algorithm is evaluated on 11 challenging sequences and the results confirm the effectiveness of the approach and significantly outperforms the state-of-the-art trackers in terms of accuracy measures including the centre location error and the overlap ratio, respectively.\",\"PeriodicalId\":146695,\"journal\":{\"name\":\"2014 International Conference on Digital Image Computing: Techniques and Applications (DICTA)\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 International Conference on Digital Image Computing: Techniques and Applications (DICTA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DICTA.2014.7008102\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Conference on Digital Image Computing: Techniques and Applications (DICTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DICTA.2014.7008102","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种基于粒子滤波框架的判别多任务稀疏学习目标跟踪方案。通过将每个粒子表示为自适应字典模板的线性组合,我们利用不同粒子(任务)之间的相关性来获得比单独学习每个任务更好的表示和更有效的方案。然而,该模型是完全生成的,所设计的跟踪器可能不够鲁棒,无法在存在快速外观变化的情况下防止漂移问题。在本文中,我们使用条件随机场(CRF)和多任务稀疏模型来扩展我们的方案,以区分目标候选和背景候选粒子。这样,大大减少了粒子样本的数量,同时使跟踪器更加鲁棒。在11个具有挑战性的序列上对所提出的算法进行了评估,结果证实了该方法的有效性,并且在中心定位误差和重叠率方面分别显著优于最先进的跟踪器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Discriminative Multi-Task Sparse Learning for Robust Visual Tracking Using Conditional Random Field
In this paper, we propose a discriminative multitask sparse learning scheme for object tracking in a particle filter framework. By representing each particle as a linear combination of adaptive dictionary templates, we utilise the correlations among different particles (tasks) to obtain a better representation and a more efficient scheme than learning each task individually. However, this model is completely generative and the designed tracker may not be robust enough to prevent the drifting problem in the presence of rapid appearance changes. In this paper, we use a Conditional Random Field (CRF) along with the multitask sparse model to extend our scheme to distinguish the object candidate from the background particle candidate. By this way, the number of particle samples is reduced significantly, while we make the tracker more robust. The proposed algorithm is evaluated on 11 challenging sequences and the results confirm the effectiveness of the approach and significantly outperforms the state-of-the-art trackers in terms of accuracy measures including the centre location error and the overlap ratio, respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信