{"title":"基于遥感数据的汽车排放分析与总排放源预测","authors":"Jun Zeng, Huafang Guo, Yueming Hu, Tao Ye","doi":"10.1109/ICARCV.2006.345143","DOIUrl":null,"url":null,"abstract":"Interest has focused on the analysis of vehicle emission based on the remote sensing data during the last two decades. This paper proposes an artificial neural network model for predicting taxi gross emitters using remote sensing data. Firstly, it introduces the field test in Guangzhou, and then analyzes the various factors from the emission data. Secondly, after doing principal components analysis and selecting algorithm and architecture, the back-propagation neural network model with 8-17-1 architecture was established as the optimal approach. It gives a percentage of hits of 93%. Finally, comparison among our former research results and aggression analysis results were presented. The results show the potentiality and validity of the proposed method in the prediction of taxi gross emitters","PeriodicalId":415827,"journal":{"name":"2006 9th International Conference on Control, Automation, Robotics and Vision","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Analysis of Vehicle Emissions and Prediction of Gross Emitter using Remote Sensing Data\",\"authors\":\"Jun Zeng, Huafang Guo, Yueming Hu, Tao Ye\",\"doi\":\"10.1109/ICARCV.2006.345143\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Interest has focused on the analysis of vehicle emission based on the remote sensing data during the last two decades. This paper proposes an artificial neural network model for predicting taxi gross emitters using remote sensing data. Firstly, it introduces the field test in Guangzhou, and then analyzes the various factors from the emission data. Secondly, after doing principal components analysis and selecting algorithm and architecture, the back-propagation neural network model with 8-17-1 architecture was established as the optimal approach. It gives a percentage of hits of 93%. Finally, comparison among our former research results and aggression analysis results were presented. The results show the potentiality and validity of the proposed method in the prediction of taxi gross emitters\",\"PeriodicalId\":415827,\"journal\":{\"name\":\"2006 9th International Conference on Control, Automation, Robotics and Vision\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 9th International Conference on Control, Automation, Robotics and Vision\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICARCV.2006.345143\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 9th International Conference on Control, Automation, Robotics and Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICARCV.2006.345143","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Analysis of Vehicle Emissions and Prediction of Gross Emitter using Remote Sensing Data
Interest has focused on the analysis of vehicle emission based on the remote sensing data during the last two decades. This paper proposes an artificial neural network model for predicting taxi gross emitters using remote sensing data. Firstly, it introduces the field test in Guangzhou, and then analyzes the various factors from the emission data. Secondly, after doing principal components analysis and selecting algorithm and architecture, the back-propagation neural network model with 8-17-1 architecture was established as the optimal approach. It gives a percentage of hits of 93%. Finally, comparison among our former research results and aggression analysis results were presented. The results show the potentiality and validity of the proposed method in the prediction of taxi gross emitters