{"title":"一类用于复杂负荷预测的神经自适应FIR滤波器","authors":"I. Krcmar, P. Maric, M. Bozic","doi":"10.1109/NEUREL.2010.5644047","DOIUrl":null,"url":null,"abstract":"Load prediction is a necessity in a deregulated electrical energy sector. It is important financially and technically. In order to cope with nonlinear and non stationary character of a load signal, an efficient adaptive predictor should be employed. Also, power utilities manage load information as a complex-valued signal. To this cause, performance of a class of complex-valued gradient descent (GD) neural adaptive finite impulse response (FIR) filters is analyzed. It is shown that fully complex nonlinear GD algorithms have the best performance in a load prediction task. To support the analysis, experiments are carried out on the test load signal, metered on a medium voltage feeder.","PeriodicalId":227890,"journal":{"name":"10th Symposium on Neural Network Applications in Electrical Engineering","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A class of neural adaptive FIR filters for complex-valued load prediction\",\"authors\":\"I. Krcmar, P. Maric, M. Bozic\",\"doi\":\"10.1109/NEUREL.2010.5644047\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Load prediction is a necessity in a deregulated electrical energy sector. It is important financially and technically. In order to cope with nonlinear and non stationary character of a load signal, an efficient adaptive predictor should be employed. Also, power utilities manage load information as a complex-valued signal. To this cause, performance of a class of complex-valued gradient descent (GD) neural adaptive finite impulse response (FIR) filters is analyzed. It is shown that fully complex nonlinear GD algorithms have the best performance in a load prediction task. To support the analysis, experiments are carried out on the test load signal, metered on a medium voltage feeder.\",\"PeriodicalId\":227890,\"journal\":{\"name\":\"10th Symposium on Neural Network Applications in Electrical Engineering\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"10th Symposium on Neural Network Applications in Electrical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NEUREL.2010.5644047\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"10th Symposium on Neural Network Applications in Electrical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NEUREL.2010.5644047","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A class of neural adaptive FIR filters for complex-valued load prediction
Load prediction is a necessity in a deregulated electrical energy sector. It is important financially and technically. In order to cope with nonlinear and non stationary character of a load signal, an efficient adaptive predictor should be employed. Also, power utilities manage load information as a complex-valued signal. To this cause, performance of a class of complex-valued gradient descent (GD) neural adaptive finite impulse response (FIR) filters is analyzed. It is shown that fully complex nonlinear GD algorithms have the best performance in a load prediction task. To support the analysis, experiments are carried out on the test load signal, metered on a medium voltage feeder.