环谱代数k理论中的局部化序列

Benjamin Antieau, T. Barthel, David Gepner
{"title":"环谱代数k理论中的局部化序列","authors":"Benjamin Antieau, T. Barthel, David Gepner","doi":"10.4171/JEMS/771","DOIUrl":null,"url":null,"abstract":"We identify the $K$-theoretic fiber of a localization of ring spectra in terms of the $K$-theory of the endomorphism algebra spectrum of a Koszul-type complex. Using this identification, we provide a negative answer to a question of Rognes for $n>1$ by comparing the traces of the fiber of the map $K(BP(n))\\rightarrow K(E(n))$ and of $K(BP(n-1))$ in rational topological Hochschild homology.","PeriodicalId":309711,"journal":{"name":"arXiv: K-Theory and Homology","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"On localization sequences in the algebraic K-theory of ring spectra\",\"authors\":\"Benjamin Antieau, T. Barthel, David Gepner\",\"doi\":\"10.4171/JEMS/771\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We identify the $K$-theoretic fiber of a localization of ring spectra in terms of the $K$-theory of the endomorphism algebra spectrum of a Koszul-type complex. Using this identification, we provide a negative answer to a question of Rognes for $n>1$ by comparing the traces of the fiber of the map $K(BP(n))\\\\rightarrow K(E(n))$ and of $K(BP(n-1))$ in rational topological Hochschild homology.\",\"PeriodicalId\":309711,\"journal\":{\"name\":\"arXiv: K-Theory and Homology\",\"volume\":\"45 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: K-Theory and Homology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4171/JEMS/771\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: K-Theory and Homology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4171/JEMS/771","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

利用kozul型复合体的自同态代数谱的K理论,确定了环谱局域化的K理论光纤。通过比较映射$K(BP(n))\右行K(E(n))$和$K(BP(n-1))$在有理拓扑Hochschild同调中的纤维迹,我们给出了$n>1$的Rognes问题的否定答案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On localization sequences in the algebraic K-theory of ring spectra
We identify the $K$-theoretic fiber of a localization of ring spectra in terms of the $K$-theory of the endomorphism algebra spectrum of a Koszul-type complex. Using this identification, we provide a negative answer to a question of Rognes for $n>1$ by comparing the traces of the fiber of the map $K(BP(n))\rightarrow K(E(n))$ and of $K(BP(n-1))$ in rational topological Hochschild homology.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信