{"title":"环谱代数k理论中的局部化序列","authors":"Benjamin Antieau, T. Barthel, David Gepner","doi":"10.4171/JEMS/771","DOIUrl":null,"url":null,"abstract":"We identify the $K$-theoretic fiber of a localization of ring spectra in terms of the $K$-theory of the endomorphism algebra spectrum of a Koszul-type complex. Using this identification, we provide a negative answer to a question of Rognes for $n>1$ by comparing the traces of the fiber of the map $K(BP(n))\\rightarrow K(E(n))$ and of $K(BP(n-1))$ in rational topological Hochschild homology.","PeriodicalId":309711,"journal":{"name":"arXiv: K-Theory and Homology","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"On localization sequences in the algebraic K-theory of ring spectra\",\"authors\":\"Benjamin Antieau, T. Barthel, David Gepner\",\"doi\":\"10.4171/JEMS/771\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We identify the $K$-theoretic fiber of a localization of ring spectra in terms of the $K$-theory of the endomorphism algebra spectrum of a Koszul-type complex. Using this identification, we provide a negative answer to a question of Rognes for $n>1$ by comparing the traces of the fiber of the map $K(BP(n))\\\\rightarrow K(E(n))$ and of $K(BP(n-1))$ in rational topological Hochschild homology.\",\"PeriodicalId\":309711,\"journal\":{\"name\":\"arXiv: K-Theory and Homology\",\"volume\":\"45 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: K-Theory and Homology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4171/JEMS/771\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: K-Theory and Homology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4171/JEMS/771","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
On localization sequences in the algebraic K-theory of ring spectra
We identify the $K$-theoretic fiber of a localization of ring spectra in terms of the $K$-theory of the endomorphism algebra spectrum of a Koszul-type complex. Using this identification, we provide a negative answer to a question of Rognes for $n>1$ by comparing the traces of the fiber of the map $K(BP(n))\rightarrow K(E(n))$ and of $K(BP(n-1))$ in rational topological Hochschild homology.